前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Redis的设计与实现(3)-字典

Redis的设计与实现(3)-字典

原创
作者头像
仁扬
发布于 2023-06-24 07:47:54
发布于 2023-06-24 07:47:54
1960
举报
文章被收录于专栏:仁扬笔记仁扬笔记

Redis数据库使用字典实现, 对数据库的增, 删, 查, 改也是构建在对字典的操作之上的.

字典是哈希键的底层实现之一: 当一个哈希键包含的键值对比较多, 又或者键值对中的元素都是比较长的字符串时, Redis 将会使用字典作为哈希键的底层实现.

1. 哈希表

Redis 的字典使用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对.

Redis 字典所使用的哈希表由 dict.h/dictht 结构定义:

代码语言:C
AI代码解释
复制
typedef struct dictht {
    // 哈希表数组
    dictEntry **table;
    // 哈希表大小
    unsigned long size;
    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;
    // 该哈希表已有节点的数量
    unsigned long used;
} dictht;

table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对.

size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量.

sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面.

2. 哈希表节点

哈希表节点使用 dictEntry 结构表示, 每个 dictEntry 结构都保存着一个键值对:

代码语言:C
AI代码解释
复制
typedef struct dictEntry {
    // 键
    void *key;
    // 值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;
    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;
} dictEntry;
  • key 键
  • v 值
  • next 指向下一个哈希表节点指针
  1. 值可以是一个 指针, uint64_t 整数, int64_t 整数;
  2. next 可以将多个哈希值相同的键值对连接在一次, 以此解决键冲突的问题.

3.字典

Redis 中的字典由 dict.h/dict 结构表示:

代码语言:C
AI代码解释
复制
typedef struct dict {
    // 类型特定函数
    dictType *type;
    // 私有数据
    void *privdata;
    // 哈希表
    dictht ht[2];
    // rehash 索引
    // 当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */
} dict;

type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的:

  1. type 属性是一个指向 dictType 结构的指针, 每个 dictType 结构保存了一簇用于操作特定类型键值对的函数, Redis 会为用途不同的字典设置不同的类型特定函数;
  2. privdata 属性则保存了需要传给那些类型特定函数的可选参数.
代码语言:C
AI代码解释
复制
typedef struct dictType {
    // 计算哈希值的函数
    unsigned int (*hashFunction)(const void *key);
    // 复制键的函数
    void *(*keyDup)(void *privdata, const void *key);
    // 复制值的函数
    void *(*valDup)(void *privdata, const void *obj);
    // 对比键的函数
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    // 销毁键的函数
    void (*keyDestructor)(void *privdata, void *key);
    // 销毁值的函数
    void (*valDestructor)(void *privdata, void *obj);
} dictType;

ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用.

除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash, 那么它的值为 -1.

4. 哈希算法

当要将一个新的键值对添加到字典里面时, 程序需要先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上

面.

Redis 计算哈希值和索引值的方法如下:

代码语言:Python
AI代码解释
复制
# 使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);
# 使用哈希表的 sizemask 属性和哈希值,计算出索引值
# 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;

当字典被用作数据库或哈希键的底层实现时, Redis 使用 MurmurHash2 算法来计算键的哈希值.

MurmurHash 算法目前的最新版本为 MurmurHash3 , 而 Redis 使用的是 MurmurHash2, 关于 MurmurHash 算法的更多信息可以参考该算法的主页: http://code.google.com/p/smhasher/.

该算法已经迁移到 GitHub: https://github.com/aappleby/smhasher


然而, 我在 GitHub 上搜索 Redis 的相关源码, 发现版本不同, 使用的哈希算法也是不相同的:

最新版本的 Redis (5.0已发布), 采用的是 SipHash 哈希算法, 链接:

https://github.com/antirez/redis/blob/unstable/src/dict.c#L84

往回看, 5.0, 4.0 都是 SipHash 哈希算法:

https://github.com/antirez/redis/blob/5.0/src/dict.c#L84

https://github.com/antirez/redis/blob/4.0/src/dict.c#L84

3.2, 3.0, 2.8, 2.6 都是 MurmurHash2 哈希算法:

https://github.com/antirez/redis/blob/3.2/src/dict.c#L92

https://github.com/antirez/redis/blob/3.0/src/dict.c#L92

https://github.com/antirez/redis/blob/2.8/src/dict.c#L92

https://github.com/antirez/redis/blob/2.6/src/dict.c#L98

而更旧的 2.4 2.2, 作者没有说是什么算法, 但是让我回想到 鸟哥 的一篇文章, 讲的是 PHP 的哈希算法, 看样子很像, 估计是 DJBX33A (Daniel J. Bernstein, Times 33 with Addition) 算法.

PHP中的Hash算法

https://github.com/antirez/redis/blob/2.4/src/dict.c#L88

https://github.com/antirez/redis/blob/2.2/src/dict.c#L88

关于哈希算法的, 还找到了两篇文章:

漫谈非加密哈希算法

我为什么要使用哈希

5. 解决键冲突

当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时, 我们称这些键发生了冲突(collision).

Redis 的哈希表使用链地址法(separate chaining)来解决键冲突: 每个哈希表节点都有一个 next 指针, 多个哈希表节点可以用 next 指针构成一个单向链表, 被分配到同一个索引上的多个节点可以用这个单向链表连接起来, 这就解决了键冲突的问题.

因为 dictEntry 节点组成的链表没有指向链表表尾的指针, 为了速度考虑, 程序总是将新节点添加到链表的表头位置, 排在已有节点前面, 操作的复杂度为 O(1).

6. rehash

当哈希表保存的键值对数量太多或者太少时, 程序需要对哈希表的大小进行相应的扩展或者收缩.

扩展和收缩哈希表的工作可以通过执行 rehash (重新散列) 操作来完成, Redis 对字典的哈希表执行 rehash 的步骤如下:

  1. 为字典的 ht1 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht0 当前包含的键值对数量 (也即是 ht0.used 属性的值):
    • 如果执行的是扩展操作, 那么 ht1 的大小为第一个大于等于 ht0.used * 2 的 2^n (2 的 n 次方幂);
    • 如果执行的是收缩操作, 那么 ht1 的大小为第一个大于等于 ht0.used 的 2^n .
  2. 将保存在 ht0 中的所有键值对 rehash 到 ht1 上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到 ht1 哈希表的指定位置上.
  3. 当 ht0 包含的所有键值对都迁移到了 ht1 之后 (ht0 变为空表), 释放 ht0 , 将 ht1 设置为 ht0 , 并在 ht1 新创建一个空白哈希表, 为下一次 rehash 做准备.

7. 哈希表的扩展与收缩

当以下条件中的任意一个被满足时, 程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 1;
  2. 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 5. (感觉书错了, 应该是 0.5 ...)

其中哈希表的负载因子可以通过公式计算得出:

代码语言:Python
AI代码解释
复制
# 负载因子 = 哈希表已保存节点数量 / 哈希表大小
load_factor = ht[0].used / ht[0].size

根据 BGSAVE 命令或 BGREWRITEAOF 命令是否正在执行, 服务器执行扩展操作所需的负载因子并不相同, 这是因为在执行 BGSAVE 命令或 BGREWRITEAOF 命令的过程中, Redis 需要创建当前服务器进程的子进程, 而大多数操作系统都采用写时复制 (copy-on-write) 技术来优化子进程的使用效率, 所以在子进程存在期间, 服务器会提高执行扩展操作所需的负载

因子, 从而尽可能地避免在子进程存在期间进行哈希表扩展操作, 这可以避免不必要的内存写入操作, 最大限度地节约内存.

另一方面, 当哈希表的负载因子小于 0.1 时, 程序自动开始对哈希表执行收缩操作.

8. 渐进式 rehash

为避免 rehash 对服务器性能造成影响, 服务器不是一次性将 ht0 里面的所有键值对全部 rehash 到 ht1 , 而是分多次, 渐进式地将 ht0 里面的键值对慢慢地 rehash 到 ht1.

以下是哈希表渐进式 rehash 的详细步骤:

  1. 为 ht1 分配空间, 让字典同时持有 ht0 和 ht1 两个哈希表;
  2. 在字典中维持一个索引计数器变量 rehashidx , 并将它的值设置为 0 , 表示 rehash 工作正式开始;
  3. 在 rehash 进行期间, 每次对字典执行添加, 删除, 查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将 ht0 哈希表在 rehashidx 索引上的所有键值对 rehash 到 ht1 , 当 rehash 工作完成之后, 程序将 rehashidx 属性的值增 1;
  4. 随着字典操作的不断执行, 最终在某个时间点上, ht0 的所有键值对都会被 rehash 至 ht1 , 这时程序将 rehashidx 属性的值设为 -1 , 表示 rehash 操作已完成.

渐进式 rehash 的好处在于它采取分而治之的方式, 将 rehash 键值对所需的计算工作均滩到对字典的每个添加, 删除, 查找和更新操作上, 从而避免了集中式 rehash 而带来的庞大计算量.

9. 字典 API

函数

作用

时间复杂度

dictCreate

创建一个新的字典.

O(1)

dictAdd

将给定的键值对添加到字典里面.

O(1)

dictReplace

将给定的键值对添加到字典里面, 如果键已经存在于字典,那么用新值取代原有的值.

O(1)

dictFetchValue

返回给定键的值.

O(1)

dictGetRandomKey

从字典中随机返回一个键值对.

O(1)

dictDelete

从字典中删除给定键所对应的键值对.

O(1)

dictRelease

释放给定字典,以及字典中包含的所有键值对.

O(N),N为字典包含的键值对数量.

10. 总结

  • 字典被广泛用于实现 Redis 的各种功能, 其中包括数据库和哈希键;
  • Redis 中的字典使用哈希表作为底层实现, 每个字典带有两个哈希表, 一个用于平时使用, 另一个仅在进行 rehash 时使用. 当字典被用作数据库的底层实现, 或者哈希键的底层实现时, Redis 使用 MurmurHash2 算法来计算键的哈希值;
  • 哈希表使用链地址法来解决键冲突, 被分配到同一个索引上的多个键值对会连接成一个单向链表;
  • 在对哈希表进行扩展或者收缩操作时, 程序需要将现有哈希表包含的所有键值对 rehash 到新哈希表里面, 并且这个 rehash 过程并不是一次性地完成的, 而是渐进式地完成的.
文章来源于本人博客,发布于 2018-05-12,原文链接:h

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ElasticSearch基本操作指令-增删改查
Result:查询不到数据,由于 desc 是 keyword ,不会被分词器解析,需精确匹配查询
子润先生
2021/06/23
3110
Elasticsearch增删改查 之 —— Get查询
GET API是Elasticsearch中常用的操作,一般用于验证文档是否存在;或者执行CURD中的文档查询。与检索不同的是,GET查询是实时查询,可以实时查询到索引结果。而检索则是需要经过处理,一般默认是1秒钟吧...才能搜索到。合理利用这些方法,可以更灵活的使用Elasticsearch。 更多内容参考ELK教程 阅读这篇文档,发现自己对很多地方不是很理解。比如存储机制、版本维护等等。暂时先做为阶段性的学习吧...后续更新在回来补补.... 查询样例 Get API允许基于ID字段从Elast
用户1154259
2018/01/17
1K0
Elasticsearch基本操作-搜索(二)
在Elasticsearch中,可以使用分页功能来分批返回搜索结果。分页可以通过"from"和"size"参数来控制。以下是在名为my_index的索引中搜索所有包含"apple"的文档,并返回第2页每页10个结果的示例:
堕落飞鸟
2023/05/08
1200
从 0 到 1 学习 elasticsearch ,这一篇就够了!(建议收藏)
之前一直想花点时间写一篇 elasticsearch 的保姆级教程,于是,趁着年假的几天时间加上周末的一些时间,我产出了自认为算是非常详细的,基于目前最新版本的elasticsearch7.11教程。不管是新手上路,还是秋名山老司机,都建议收藏一下,希望看完对您有所帮助!如果可以,记得一键三连!
大数据梦想家
2021/04/14
1.8K0
从 0 到 1 学习 elasticsearch ,这一篇就够了!(建议收藏)
Python3操作Elasticsearch进行增删改查
# -*- coding: utf-8 -*- from elasticsearch import Elasticsearch # 默认host为localhost,port为9200.但也可以指定host与port es = Elasticsearch() # 插入数据,index,doc_type名称可以自定义,id可以根据需求赋值,body为内容 es.index(index="my_index",doc_type="test_type",id=0,body={"name":"python","addr":"深圳"}) es.index(index="my_index",doc_type="test_type",id=1,body={"name":"python","addr":"深圳"}) #同样是插入数据,create() 方法需要我们指定 id 字段来唯一标识该条数据,而 index() 方法则不需要,如果不指定 id,会自动生成一个 id es.create(index="my_index",doc_type="test_type",id=1,body={"name":"python","addr":"深圳"}) #删除指定的index、type、id的文档 es.delete(index='indexName', doc_type='typeName', id=1) #删除index es.indices.delete(index='news', ignore=[400, 404]) query = {'query': {'match_all': {}}}# 查找所有文档 query1 = {'query': {'match': {'sex': 'famale'}}}# 删除性别为女性的所有文档 query2 = {'query': {'range': {'age': {'lt': 11}}}}# 删除年龄小于11的所有文档 query3 = {'query': {'term': {'name': 'jack'}}}# 查找名字叫做jack的所有文档 #删除所有文档 es.delete_by_query(index="my_index",doc_type="test_type",body=query) #get:获取指定index、type、id所对应的文档 es.get(index="my_index",doc_type="test_type",id=1) #search:查询满足条件的所有文档,没有id属性,且index,type和body均可为None result = es.search(index="my_index",doc_type="test_type",body=query) print(result['hits']['hits'][0])# 返回第一个文档的内容 #update:更新指定index、type、id所对应的文档 #更新的主要点: #1. 需要指定 id #2. body={"doc": <xxxx>} , 这个doc是必须的 es.update(index="my_index",doc_type="test_type",id=1,body={"doc":{"name":"python1","addr":"深圳1"}})
双面人
2019/04/10
2.2K0
学习ElasticSearch的Restful Api快速掌握ES数据的增删改查
3)NODE-1使用文档ID来确定文档属于分片0,通过集群状态中的内容路由表信息获知分片0的主分片位于NODE3,因此请求被转发到NODE3上
用户3587585
2024/06/13
4060
学习ElasticSearch的Restful Api快速掌握ES数据的增删改查
ElasticSearch教程(二)—— 基本使用
ElasticSearch是面向文档的,它存储文档,并索引每个文档的内容使之可以被索引。ES选择json作为文档序列化格式。
逝兮诚
2019/10/30
6810
Elasticsearch学习(五)Elasticsearch中的mapping问题,Search 搜索详解
Mapping在Elasticsearch中是非常重要的一个概念。决定了一个index中的field使用什么数据格式存储,使用什么分词器解析,是否有子字段等。
一写代码就开心
2021/03/02
1.8K0
Elasticsearch学习(五)Elasticsearch中的mapping问题,Search 搜索详解
ElasticSearch 实用学习笔记 (从入门到精通)
找到 config 下的 kibana.yml 文件,修改最后一行为 i18n.locale: “zh-CN”
Gorit
2021/12/08
2.4K0
ElasticSearch常见用法, 看这一篇就够了
ES中提供了一种强大的检索数据方式,这种检索方式称之为Query DSL,Query DSL是利用Rest API传递JSON格式的请求体(Request Body)数据与ES进行交互,这种方式的丰富查询语法让ES检索变得更强大,更简洁。
架构狂人
2023/09/13
3390
ElasticSearch常见用法, 看这一篇就够了
elasticSearch学习(九)
此次项目实战采用java爬虫爬取京东的数据放在es数据源中,然后通过页面来模拟京东搜索。
崔笑颜
2020/08/24
1.1K0
elasticSearch学习(九)
02.全文搜索ES
elasticsearch 6 (和elasticsearch 5 的区别在于,root用户权限、一个库只能建立一个表)
全栈程序员站长
2022/06/30
7200
02.全文搜索ES
ElasticSearch 高级操作
在 Postman 中,向 ES 服务器发 DELETE 请求:http://127.0.0.1:9200/student
用户9615083
2022/12/25
7630
ElasticSearch  高级操作
全文检索工具elasticsearch:第一章:理论知识
什么是搜索, 计算机根据用户输入的关键词进行匹配,从已有的数据库中摘录出相关的记录反馈给用户。 
Java廖志伟
2022/09/28
5150
全文检索工具elasticsearch:第一章:理论知识
快速入门ElasticSearch
最近事情比较多,好久没更新文章,现在失踪人口回归,开始日常更新文章,一周不低于两篇,同时内容不限于Python,会有好多有趣的技术等着去学习和发现~~~
啃饼思录
2020/10/23
1.9K0
快速入门ElasticSearch
ElasticSearch高级操作
term查询,查询text类型字段时,只有其中的单词相匹配都会查到,text字段会对数据进行分词
小炜同学
2022/09/23
7900
Elasticsearch基本使用
可以在https://www.elastic.co/cn/downloads/elasticsearch这个页面找到elasticsearch对应系统的安装包,elasticsearch用java开发的, 最新的版本内置了对应的jdk, 通过下面的方式能快速启动:
良辰美景TT
2020/12/14
6630
ElasticSearch学习(二)——索引、文档简单操作
在Postman中发PUT请求:http://127.0.0.1:9200/index_name
传说之下的花儿
2023/04/16
5480
ElasticSearch学习(二)——索引、文档简单操作
elasticsearch[三]-搜索结果处理排序、分页、高亮等原理+实践
elasticsearch 默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword 类型、数值类型、地理坐标类型、日期类型等。
汀丶人工智能
2024/01/17
1.3K0
elasticsearch[三]-搜索结果处理排序、分页、高亮等原理+实践
【elasticsearch】基本概念和增删改查
Elasticsearch 是一个近实时的搜索平台。这意味着从您索引一个文档开始直到它可以被查询时会有轻微的延迟时间(通常为一秒)。 Lucence;
周杰伦本人
2022/10/25
2980
【elasticsearch】基本概念和增删改查
推荐阅读
相关推荐
ElasticSearch基本操作指令-增删改查
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档