Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >大规模神经网络最新文献综述:训练高效DNN、节省内存使用、优化器设计

大规模神经网络最新文献综述:训练高效DNN、节省内存使用、优化器设计

作者头像
数据派THU
发布于 2022-04-29 03:40:33
发布于 2022-04-29 03:40:33
64500
代码可运行
举报
文章被收录于专栏:数据派THU数据派THU
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
来源:数学中国本文约3200字,建议阅读5分钟在本综述论文中,研究者解释了不同技术的工作原理、评估和比较,还分析了一些实现这些技术的框架。

现代深度学习人工智能技术的发展涉及使用深度神经网络(DNN)来解决图像、视频、音频、自然语言处理、图像形式的内容生成等各种问题,或生成给定格式主题的文本等任务。

俄罗斯斯科尔科沃科学技术研究所、法国里尔大学、波尔多大学、Inria 等科研机构联合发表了一篇论文《Survey on Large Scale Neural Network Training》,它试图解决的问题是:若给定模型和计算平台的情形下,如何训练才是最有效率的。为了使训练高效,其必须可行,最大程度地利用资源的计算能力,在并行情况下,它不能让信息传输成为瓶颈。训练的效率从根本上取决于计算内核在计算资源(CPU、TPU、GPU)上的有效实现以及 GPU 之间和不同内存之间通信的有效实现。

论文链接:https://arxiv.org/abs/2202.10435

在这两种情况下,人们为优化计算内核的算术强度,及有效实现硬件网络上的通信做了很多工作。对于使用者来说,已存在强大的分析工具来识别硬件瓶颈,并可用于判定本调查中描述哪些策略可用于解决算术强度、内存和控制交换数据量的问题。

该综述研究涵盖了应对这些限制的通用技术。如果由于模型、优化器状态和激活不适合内存而无法先验执行计算,则可以使用内存交换计算(重新实现)或数据转移(激活和权重卸载)。我们还可以通过近似优化器状态和梯度(压缩、修剪、量化)来压缩内存使用。

并行方法(数据并行、模型并行、流水线模型并行)也可以将内存需求分布到多个算力资源上。如果计算的算力强度不足以充分利用 GPU 和 TPU,一般是因为 mini-batch 太小,那么上述技术也可以增加 mini-batch 的大小。最后,如果使用数据并行引起的通信开销昂贵到拖累计算速度,则可以使用其他形式的并行(模型并行、流水线模型并行),梯度压缩也可以限制数据交换的数量。

在本次调查中,研究者解释了这些不同技术是如何工作的,其中描述了评估和比较所提出方法的文献,还分析了一些实施这些技术的框架。

下表 1为文章讨论的不同技术及其对通信、内存和计算效率的影响。

研究者根据目的区分了以下方法:首先讨论减少 GPU 内存使用,随后考虑对不适合 GPU 的模型使用并行训练,最后讨论为训练存储在多个设备上的模型而开发的优化器的设计。

单 GPU 情况下减少内存使用

在前向传播期间,神经网络存储执行反向传播所需的激活。在某些情况下,这些激活会消耗大量内存,让模型无法训练。减少内存使用的主要方法有两种:重新实现(也称为 checkpointing)和卸载。

激活的重新实现

重新实现的策略仅在前向传播期间存储一小部分激活,并在反向传播期间重新计算其余部分。重新实现方法可以通过它们处理的计算图来区分。第一组来自自动微分(AD),它们为同构顺序网络(多层按顺序执行并具有相同计算和内存成本的 DNN)找到最佳调度。第二组专注于过渡模型,例如异构序列网络(可以是由任意复杂模块组成的任何序列神经网络,如 CNN、ResNet、一些 transformer),它将解决方案从 AD 调整为异构设置。

一些方法可以对一般计算图执行重新实现,尽管确切的计算成本可能指数级上升,如下表 2 所示。

激活卸载

卸载(又被称为内存交换)是一种通过在前向传递期间将激活转移到 CPU 内存并将它们预取回 GPU 内存,以进行相应的向后计算来节省 GPU 内存的技术。

由于 CPU 和 GPU 之间 PCI 总线的带宽有限,必须优化选择传输激活,以及何时传输的选择。

在 vDNN [Rhu et al., 2016] 研究中,作者通过仅卸载卷积层的输入来遵循对 CNN 有效的启发式方法,然而它不能很好地推广到一般 DNN 上。另有研究 [Le et al., 2018] 考虑了激活生命周期来选择卸载的内容,并使用图搜索方法来识别插入卸载 / 预取操作的时刻。AutoSwap [Zhang et al., 2019] 通过为每个变量分配优先级分数来决定卸载哪些激活。

权重卸载

前面提到的很多方法也适用于卸载权重,这是因为卸载权重依赖于适用于任何张量的通用技术,比如 TFLMS、AutoSwap 或者 SwapAdvisor。

不适合单个 GPU 的模型的并行性

在模型并行化中,只需要传达激活信息,并且传输只发生在分配给不同处理器的连续层之间。本章节提到的工作如下表 4 所示。

如果多个小批量被 pipeline 化 ,则可以加快模型并行化中的执行速度,从而同时激活了多个训练迭代,具体可见 [Huang et al., 2019]。一旦在所有这些小批量上计算了前向和后向阶段,权重就会更新。这种方法实现起来相当简单,但也导致计算资源大部分处于空置状态。[Narayanan et al., 2019] 中提出的 PipeDream 方法仅强制前向和后向任务针对给定的小批量使用相同的模型权重,改进了这一训练过程。

减少执行更新的频率也已被证明有助于限制权重过期(Narayanan et al., 2021a)。[Yang et al., 2021] 提出的 PipeMare 根据 pipeline 阶段向后调整学习率和模型权重。

对 pipeline 方法中激活导致的存储成本进行建模是一项艰巨的任务(Beaumont et al., 2021b)。例如,[Fan et al., 2021] 中的 DAPPLE 、 [Li and Hoefler, 2021] 中的 Chimera 使用 1F1B(One-Forward-One-Backward)调度来减少与激活相关的内存消耗。1F1B 是一种同步权重更新技术,尽可能早地安排每个微批次的反向传递,以释放激活占用的内存。

有些论文专门处理具有挑战性的拓扑。比如,为了解决高通信成本和异构网络能力的问题,[Zhan and Zhang, 2019] 中的 Pipe-torch 提出了一种更新的动态规划策略,该策略假设计算和通信之间没有重叠。[Park et al., 2020] 中的 Pipe 解决了异构 GPU 的其他问题,采用的方法是将这些异构 GPU 分成虚拟 worker,并在每个虚拟 worker 中运行 pipeline 并行化,同时依赖 worker 之间的数据并行化。

用于跨设备模型训练的优化器 

零冗余优化器

2020 年, Rajbhandari, S. 等人在论文《 ZeRO: Memory Optimizations toward Training Trillion Parameter Models》中提出了零冗余优化器(Zero Redundancy Optimizer, ZeRO),将它作为一种减少内存使用的数据并行化实现。根据在设备上划分的张量,该算法具有三个阶段,即阶段 1 - 优化器状态、阶段 2 - 优化器状态和梯度和阶段 3 - 优化器状态、梯度和模型超参数。

2021 年, Ren, J. 等人在论文《 ZeRO-Offload: Democratizing Billion-Scale Model Training》中将 ZeRO 与 Zero-Offload 内部参数更新的 CPU 端计算统一起来,其中梯度被迁移至存储参数副本的 CPU,更新的权重迁移回 GPU。

低精度优化器

为了进一步减少内存使用,低精度优化器(low-precision optimizer)有了用武之地。这些方法使用低精度格式拉力表示优化器状态以及状态的辅助向量。并且,误差补偿技术可以被用来维持跟踪统计的近似准确率。

2021 年, Dean, J. 等人在论文《Large Scale Distributed Deep Networks》中提出了一种将 Adam 优化器存储在 8-bit 的方法,同时在使用 32-bit 格式时保持整体性能不变。2020 年, Sun, X. 等人在论文《Ultra-Low Precision 4-bit Training of Deep Neural Networks》中提出了更激进的精度降低,其中开发了处理 4-bit 表示的特定路径。

收敛加速

另一种加速大规模深度学习模型的方法是减少节点之间的通信时间以及在适当局部最小值收敛所需的 epoch 数量。

关于通信成本的降低。在将梯度在计算节点之间迁移之前对它们进行压缩已经出现了不同的方法,具体有三类,分别是分裂(sparsification)、量化(quantization)和低秩(low-rank)方法。

分裂方法只迁移完整梯度元素的一些子集,并在参数向量中更新相应的元素。这种近似方法能够显著降低通信成本,同时保持训练模型的性能,代表工作有 2017 年 Aji, A. F. 和 Heafield, K 的论文《 Sparse Communication for Distributed Gradient Descent 》和 2019 年 Alistarh, D. 等的论文《The Convergence of Sparsified Gradient Methods》。

另一种方法是基于迁移梯度的量化,该方法只迁移一定数量的 bit、从这些 bit 中重建整个梯度向量并更新参数向量的所有元素。这种方法对于一些神经网络架构和实验设置得到了不错的结果,代表工作有 Alistarh, D. 等人 2017 年的论文《QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding》。

最后一种降低通信成本的方法是低秩方法,其中在更新参数向量之前构建、迁移和使用梯度的低秩近似来恢复完整格式的梯度。低秩近似可以通过块能量(block power)方法或者最小化策略来构建,各自的代表工作分别是 Vogels et al., 2019 和

Cho et al., 2019。

大批量训练。另一种加速优化器收敛的方法是针对每个批使用大量的样本。这种训练设置可以减少每个 epoch 中的迭代次数,并提升 GPU 的利用率。在 Goyal, P 等人 2017 年的论文《Accurate, Large Minibatch SGD》中,研究者提出使用线性缩放规则来更新学习率和批大小。这一设置可以稳定优化过程,并将模型的最终性能收敛至相同。

编辑:文婧

代码语言:javascript
代码运行次数:0
运行
复制
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-04-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
45页的NAS神经网络搜索的综述,请查收!
研究人员对机器学习和深度学习自动化兴趣的日益增长,促进了神经架构优化的自动化方法的发展。网络架构的选择至关重要,中的诸多进展也源于它的即时改进。但深度学习技术是计算密集型,而且应用深度学习需要较高的领域相关相关知识。因此,即便这一过程只有部分是自动化的,也有助于研究人员和从业人员更容易地使用深度学习。
小小詹同学
2019/06/03
7230
ICLR 2019论文解读:量化神经网络
深度神经网络(DNN)已经极大推升了机器学习(ML)/人工智能(AI)在许多不同任务中的性能,并由此带来了许多我们日常生活中所见的成熟应用。经典案例包括图像目标识别(Krizhevsky et al., 2012; Szegedy et al., 2014)、语音识别(Hinton et al., 2012; Sainath et al., 2013)、统计机器翻译(Devlin et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015)和掌握围棋(Silver et al., 2016)。
机器之心
2019/06/20
2K0
ICLR 2019论文解读:量化神经网络
OpenAI秘籍披露:一篇文章教会你训练大型神经网络
---- 新智元报道   编辑:LRS 【新智元导读】想知道那些超大规模神经网络都是怎么训出来的?OpenAI一篇文章总结:除了显卡要多,算法也很重要! 如今AI的很多进步都要归功于大型神经网络,尤其是大公司和研究机构提供的预训练模型更是推动了下游任务的进步。 但想自己动手训练一个大型神经网络并不简单,首先要面对的就是海量的数据、多机协调和大量GPU的调度工作。 一提到「并行」,冥冥之中就会感觉多了很多隐藏的bug。 最近OpenAI发布了一篇文章,详细介绍了一些训练大型神经网络的相关技术及底层原理
新智元
2022/06/20
6890
OpenAI秘籍披露:一篇文章教会你训练大型神经网络
每日论文速递 | GEAR:高效 KV Cache 压缩框架
摘要:键值(KV)缓存已成为加快大语言模型(LLM)推理生成速度的事实。然而,随着序列长度的增加,缓存需求也在不断增长,这使得 LLM 推理变成了一个内存约束问题,极大地限制了系统的吞吐量。现有的方法依赖于放弃不重要的标记或均匀量化所有条目。然而,这些方法在表示压缩矩阵时往往会产生较高的近似误差。自回归解码过程进一步加剧了每一步的误差,导致模型生成出现严重偏差,性能下降。为了应对这一挑战,我们提出了一种高效的 KV 缓存压缩框架--GEAR,它能实现近乎无损的高比率压缩。GEAR 首先对大部分大小相似的条目进行超低精度量化。然后,它采用低秩矩阵来近似量化误差,并采用稀疏矩阵来弥补离群条目的个别误差。通过巧妙地整合三种技术,GEAR 能够充分发挥它们的协同潜力。我们的实验证明,与其他技术相比,GEAR 实现了近乎无损的 4 位 KV 高速缓存压缩,吞吐量提高了 2.38 倍,同时内存峰值大小减少了 2.29 倍。
zenRRan
2024/03/25
1.1K0
每日论文速递 | GEAR:高效 KV Cache 压缩框架
每日论文速递 | GaLore: 使用梯度低秩映射进行大模型 Memory-Efficient 全参训练
摘要:训练大型语言模型(LLMs)面临着显著的内存挑战,主要是由于权重和优化器状态的不断增大。常见的内存降低方法,如低秩适应(LoRA),在每一层中向冻结的预训练权重添加一个可训练的低秩矩阵,从而减少可训练参数和优化器状态。然而,这些方法通常在预训练和微调阶段的性能上都不如使用全秩权重训练,因为它们将参数搜索限制在低秩子空间中,改变了训练动态,并且可能需要全秩热启动。在这项工作中,我们提出了Gradient Low-Rank Projection(GaLore),一种允许全参数学习但比LoRA等常见低秩适应方法更节省内存的训练策略。我们的方法在优化器状态的内存使用上最多减少了65.5%,同时在使用C4数据集进行LLaMA 1B和7B架构的预训练以及在GLUE任务上对RoBERTa进行微调时,保持了效率和性能。我们的8位GaLore相较于BF16基准,将优化器内存进一步降低了82.5%,总训练内存降低了63.3%。值得注意的是,我们首次证明了在具有24GB内存的消费级GPU上(例如NVIDIA RTX 4090)进行7B模型的预训练是可行的,而无需模型并行、检查点策略或卸载策略。
zenRRan
2024/03/14
5910
每日论文速递 | GaLore: 使用梯度低秩映射进行大模型 Memory-Efficient 全参训练
Hinton胶囊网络后最新研究:用“在线蒸馏”训练大规模分布式神经网络
【新智元导读】深度学习领域的大牛、多伦多大学计算机科学教授Geoffrey Hinton近年在distillation这一想法做了一些前沿工作。今天我们介绍的是Hinton作为作者之一,谷歌大脑、DeepMind等的研究人员提交的distillation的更进一步工作:通过online distillation进行大规模分布式神经网络训练。该工作提出了Codistillation的概念,通过大规模实验,发现codistillation方法提高了准确性并加快了训练速度,并且易于在实践中使用。 论文地址:h
新智元
2018/04/17
1.1K0
Hinton胶囊网络后最新研究:用“在线蒸馏”训练大规模分布式神经网络
图神经网络加速综述: 算法、系统和硬件
GNN在许多任务上实现了最先进的性能,但在处理具有大量数据和严格延迟要求的实际应用程序时,面临可扩展性挑战。为了应对这些挑战,已经进行了许多关于如何加速GNN的研究。这些加速技术涉及GNN的各个方面,从智能训练和推理算法到高效系统和定制硬件。本综述提供了GNN加速的分类,回顾了现有的方法,并提出了未来的研究方向。
算法进阶
2024/02/17
1.3K0
图神经网络加速综述: 算法、系统和硬件
北大校友“炼丹”分享:OpenAI如何训练千亿级模型?
“炼大模型”已成为人工智能领域的主流研发趋势。从GPT-3的1750亿,到如今悟道2.0的1.75万亿,超大语言模型在 NLP 基准任务中不断刷新SOTA。
AI科技评论
2021/10/11
1.5K0
北大校友“炼丹”分享:OpenAI如何训练千亿级模型?
神经网络的压缩方法总结
我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。  按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为“前端压缩”和“后端压缩”两部分。
嵌入式视觉
2022/09/05
6740
神经网络的压缩方法总结
每日论文速递 | BiLoRA: 基于双极优化消除LoRA过拟合
摘要:低秩适应(LoRA)是在下游任务中通过学习低秩增量矩阵对大规模预训练模型进行微调的一种流行方法。虽然与完全微调方法相比,LoRA 及其变体能有效减少可训练参数的数量,但它们经常会对训练数据进行过拟合,导致测试数据的泛化效果不理想。为了解决这个问题,我们引入了 BiLoRA,这是一种基于双级优化(BLO)的消除过拟合的微调方法。BiLoRA 采用伪奇异值分解来参数化低秩增量矩阵,并将伪奇异向量和伪奇异值的训练分成两个不同的训练数据子集。这种分割嵌入了 BLO 框架的不同层次,降低了对单一数据集过度拟合的风险。BiLoRA 在涵盖自然语言理解和生成任务的十个数据集上进行了测试,并应用于各种著名的大型预训练模型,在可训练参数数量相似的情况下,BiLoRA 明显优于 LoRA 方法和其他微调方法。
zenRRan
2024/04/11
5640
每日论文速递 | BiLoRA: 基于双极优化消除LoRA过拟合
超越低秩自适应,从LoRA到Neat,利用轻量级神经网络优化预训练模型 !
预训练模型,在广泛和多样的一般领域语料库上进行训练,具有卓越的泛化能力,受益于一系列基本任务,如自然语言理解[Devlin,2018,Liu,2019],自然语言生成,以及图像分类[Dosovitskiy等人,2020a]。为了将预训练模型适应到特定的下游任务,通常采用微调。然而,由于预训练模型中参数数量庞大,完全微调需要大量的计算资源和产生大量的内存开销[Qin等人,2024]。
AIGC 先锋科技
2024/11/26
2290
超越低秩自适应,从LoRA到Neat,利用轻量级神经网络优化预训练模型 !
IJCAI2023 | 高效训练Transformers的方法
深度学习是近年来最重要的方法之一,它彻底改变了机器学习和人工智能,并引领着第四次工业革命。训练GPT-3(1750亿参数)需要355个GPU年,并且至少花费460万美元。
JOYCE_Leo16
2024/03/22
3960
IJCAI2023 | 高效训练Transformers的方法
田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型
上个月,Meta FAIR 田渊栋参与的一项研究广受好评,他们在论文《 MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases》中开始卷 10 亿以下参数小模型,主打在移动设备上运行 LLM。
机器之心
2024/03/18
1.3K0
田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型
节省显存新思路,在 PyTorch 里使用 2 bit 激活压缩训练神经网络
本文将介绍来自加州伯克利大学的 ActNN,一个基于 PyTorch 的激活压缩训练框架。在同样的内存限制下,ActNN 通过使用 2 bit 激活压缩,可以将 batch size 扩大 6-14 倍,将模型尺寸或者输入图片扩大 6-10 倍。ActNN 相关论文已被 ICML 2021 接收为 Long Talk,代码开源于 github。
OpenCV学堂
2021/07/14
1.2K0
节省显存新思路,在 PyTorch 里使用 2 bit 激活压缩训练神经网络
用FP8训练大模型有多香?微软:比BF16快64%,省42%内存
大型语言模型(LLM)具有前所未有的语言理解和生成能力,但是解锁这些高级的能力需要巨大的模型规模和训练计算量。在这种背景下,尤其是当我们关注扩展至 OpenAI 提出的超级智能 (Super Intelligence) 模型规模时,低精度训练是其中最有效且最关键的技术之一,其优势包括内存占用小、训练速度快,通信开销低。目前大多数训练框架(如 Megatron-LM、MetaSeq 和 Colossal-AI)训练 LLM 默认使用 FP32 全精度或者 FP16/BF16 混合精度。
机器之心
2023/11/02
9330
用FP8训练大模型有多香?微软:比BF16快64%,省42%内存
在定制硬件上实现DNN近似算法,一文概述其过去、现在与未来
来自社交媒体和物联网等多个渠道的可用数字数据(如图像、视频和语音)呈指数级增长,这驱动了对高性能数据分析的需求。与其它机器学习算法相比,深度神经网络(DNN)在过去十年里实现了巨大的准确率提升。它的应用领域很广,如图像分类、目标检测、自动驾驶和无人机导航等。其中卷积神经网络和循环神经网络这两种深度神经网络尤其受欢迎。CNN 在学习空间特征方面很强,而 RNN 则更适合涉及时间序列的问题。
机器之心
2019/04/29
9950
在定制硬件上实现DNN近似算法,一文概述其过去、现在与未来
OpenAI:训练大型神经网络的四种基本方法
来源 | OpenAI 编译 | 黄楠 编辑 | 陈彩娴 大型神经网络是当前人工智能领域的热门话题之一,那么,如何训练大模型? 最近,曾推出大规模预训练模型 GPT-3 的 OpenAI 发表了一篇博文,介绍了基于 GPU 的四种节省内存的并行训练方法,分别是: 数据并行——在不同的 GPU 上运行同一批次的不同子集; 流水线并行——在不同的 GPU 上运行模型的不同层; 张量并行——分解单个运算的数学运算,例如将矩阵乘法拆分到 GPU 上; 专家混合(MOE)——仅通过每层的一小部分处理每个示例。 图注
AI科技评论
2022/06/14
1.3K0
OpenAI:训练大型神经网络的四种基本方法
学界 | 深度神经网络的分布式训练概述:常用方法和技巧全面总结
深度学习已经为人工智能领域带来了巨大的发展进步。但是,必须说明训练深度学习模型需要显著大量的计算。在一台具有一个现代 GPU 的单台机器上完成一次基于 ImageNet 等基准数据集的训练可能要耗费多达一周的时间,研究者已经观察到在多台机器上的分布式训练能极大减少训练时间。近期的研究已经通过使用 2048 个 GPU 的集群将 ImageNet 训练时间降低至了 4 分钟。这篇论文总结了各种用于分布式训练的算法和技术,并给出了用于现代分布式训练框架的当前最佳方法。更具体而言,我们探索了分布式随机梯度下降的同步和异步变体、各种 All Reduce 梯度聚合策略以及用于在集群上实现更高吞吐量和更低延迟的最佳实践,比如混合精度训练、大批量训练和梯度压缩。
机器之心
2018/12/06
1.8K0
学界 | 深度神经网络的分布式训练概述:常用方法和技巧全面总结
全方位分析大模型参数高效微调,清华研究登Nature子刊
机器之心专栏 机器之心编辑部 近年来,清华大学计算机系孙茂松团队深入探索语言大模型参数高效微调方法的机理与特性,与校内其他相关团队合作完成的研究成果 “面向大规模预训练语言模型的参数高效微调”(Parameter-efficient Fine-tuning of Large-scale Pre-trained Language Models)3 月 2 日在《自然・机器智能》(Nature Machine Intelligence)上发表。该研究成果由计算机系孙茂松、李涓子、唐杰、刘洋、陈键飞、刘知远和深圳
机器之心
2023/03/29
9110
全方位分析大模型参数高效微调,清华研究登Nature子刊
揭秘大模型背后的机理,清华49页长文全方位分析参数高效微调方案Delta Tuning
机器之心专栏 机器之心编辑部 本文中,包括刘知远、唐杰、孙茂松等在内来自清华大学的研究者对大模型的参数高效微调进行了全方位的理论和实验分析。 预训练语言模型 (PLM) 已经毫无疑问地成为各种 NLP 任务的基础架构,而且在 PLM 的发展中,呈现出了一个似乎不可逆的趋势:即模型的规模越来越大。更大的模型不仅会在已知任务上取得更好的效果,更展现出了完成更复杂的未知任务的潜力。然而,更大的模型也在应用上面临着更大的挑战,传统方法对超大规模的预训练模型进行全参数微调的过程会消耗大量的 GPU 计算资源与存储
机器之心
2022/04/08
2.7K0
揭秘大模型背后的机理,清华49页长文全方位分析参数高效微调方案Delta Tuning
推荐阅读
相关推荐
45页的NAS神经网络搜索的综述,请查收!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档