☀️☀️你好啊!小伙伴,我是小冷。是一个兴趣驱动自学练习两年半的的Java工程师。 一位十分喜欢将知识分享出来的Java博主⭐️⭐️⭐️,擅长使用Java技术开发web项目和工具 文章内容丰富:覆盖大部分java必学技术栈,前端,计算机基础,容器等方面的文章 ✏️高质量技术专栏专栏链接: 微服务,数据结构,netty,单点登录,SSM ,SpringCloudAlibaba等 ⏩当前专栏:搜索引擎系列 ⏩专栏代码地址: ES-京东 ⏩专栏代码地址: ES-API
我们搜做 : 冷环渊,可以看到有关冷环渊的一些信息,
那么这个是怎么做到的呢?,往常我们都是用
SQL : like %冷环渊% 但是数据量一旦变大了,就会变慢,这个时候用索引, 也是只能快一些
这个时候 Elasticsearch就是帮助我们解决问题的关键人物
他专注于搜索 : 百度,github,淘宝等搜索都能看到他的影子
我们下面会通过以下去完成对es的学习
以后只要,需要用到搜索,就可以使用ES , 建议基于大数据的情况下
1998年9月4日,Google公司在美国硅谷成立。正如大家所知,它是一家做搜索引擎起家的公司。
学大数据 首先就是 hadoop
无独有偶,一位名叫Doug Cutting的美国工程师,也迷上了搜索引擎。他做了一个用于文本搜索的函数库(姑且理解为软件的功能组件),命名为Lucene。
左为Doug Cutting,右为Lucene的LOGO
Lucene是用JAVA写成的,目标是为各种中小型应用软件加入全文检索功能。因为好用而且开源(代码公开),非常受程序员们的欢迎。
早期的时候,这个项目被发布在Doug Cutting的个人网站和SourceForge(一个开源软件网站)。后来,2001年底,Lucene成为Apache软件基金会jakarta项目的一个子项目。
Apache软件基金会,搞IT的应该都认识
2004年,Doug Cutting再接再励,在Lucene的基础上,和Apache开源伙伴Mike Cafarella合作,开发了一款可以代替当时的主流搜索的开源搜索引擎,命名为Nutch。
Nutch是一个建立在Lucene核心之上的网页搜索应用程序,可以下载下来直接使用。它在Lucene的基础上加了网络爬虫和一些网页相关的功能,目的就是从一个简单的站内检索推广到全球网络的搜索上,就像Google一样。
Nutch在业界的影响力比Lucene更大。
大批网站采用了Nutch平台,大大降低了技术门槛,使低成本的普通计算机取代高价的Web服务器成为可能。甚至有一段时间,在硅谷有了一股用Nutch低成本创业的潮流。
随着时间的推移,无论是Google还是Nutch,都面临搜索对象“体积”不断增大的问题。
尤其是Google,作为互联网搜索引擎,需要存储大量的网页,并不断优化自己的搜索算法,提升搜索效率。
Google搜索栏
在这个过程中,Google确实找到了不少好办法,并且无私地分享了出来。
2003年,Google发表了一篇技术学术论文,公开介绍了自己的谷歌文件系统GFS(Google File System)。这是Google公司为了存储海量搜索数据而设计的专用文件系统。
第二年,也就是2004年,Doug Cutting基于Google的GFS论文,实现了分布式文件存储系统,并将它命名为NDFS(Nutch Distributed File System)。
还是2004年,Google又发表了一篇技术学术论文,介绍自己的MapReduce编程模型。这个编程模型,用于大规模数据集(大于1TB)的并行分析运算。
第二年(2005年),Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。
2006年,当时依然很厉害的Yahoo(雅虎)公司,招安了Doug Cutting。
这里要补充说明一下雅虎招安Doug的背景:2004年之前,作为互联网开拓者的雅虎,是使用Google搜索引擎作为自家搜索服务的。在2004年开始,雅虎放弃了Google,开始自己研发搜索引擎。所以。。。
加盟Yahoo之后,Doug Cutting将NDFS和MapReduce进行了升级改造,并重新命名为Hadoop(NDFS也改名为HDFS,Hadoop Distributed File System)。
这个,就是后来大名鼎鼎的大数据框架系统——Hadoop的由来。而Doug Cutting,则被人们称为Hadoop之父。
Hadoop这个名字,实际上是Doug Cutting他儿子的黄色玩具大象的名字。所以,Hadoop的Logo,就是一只奔跑的黄色大象。
我们继续往下说。
还是2006年,Google又发论文了。
这次,它们介绍了自己的BigTable。这是一种分布式数据存储系统,一种用来处理海量数据的非关系型数据库。
Doug Cutting当然没有放过,在自己的hadoop系统里面,引入了BigTable,并命名为HBase。
好吧,反正就是紧跟Google时代步伐,你出什么,我学什么。
所以,Hadoop的核心部分,基本上都有Google的影子。
2008年1月,Hadoop成功上位,正式成为Apache基金会的顶级项目。
同年2月,Yahoo宣布建成了一个拥有1万个内核的Hadoop集群,并将自己的搜索引擎产品部署在上面。
7月,Hadoop打破世界纪录,成为最快排序1TB数据的系统,用时209秒。
此后,Hadoop便进入了高速发展期,直至现在。
回到主题
Lucene 是一套信息检索工具包,jar包 不好含搜索引擎系统‘
包含 : 索引结构,读写索引工具 排序,搜索规则 。。。 工具类
Lucene 和 ES 的关系:
ES 是居于 Lucene 做了封装和增强 (我们上手就会感到十分的简单)
Elaticsearch,简称为es, es是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别(大数据时代)的数据。es也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
据国际权威的数据库产品评测机构DB Engines的统计,在2016年1月,ElasticSearch已超过Solr等,成为排名第一的搜索引擎类应用。
关键字就是:
架构选择!!!
Elasticsearch是一个实时分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。
它用于全文搜索、结构化搜索、分析以及将这三者混合使用:
维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入实时搜索(search-asyou-type)和搜索纠错(did-you-mean)等搜索建议功能。
英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编辑以实时的反馈,以便及时了解公众对新发表的文章的回应。
StackOverflow结合全文搜索与地理位置查询,以及more-like-this功能来找到相关的问题和答案。
Github使用Elasticsearch检索1300亿行的代码。
但是Elasticsearch不仅用于大型企业,它还让像DataDog以及Klout这样的创业公司将最初的想法变成可扩展的解决方案。
Elasticsearch可以在你的笔记本上运行,也可以在数以百计的服务器上处理PB级别的数据 。
Elasticsearch是一个基于Apache Lucene™的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。
但是,Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化
Solr可以独立运行,运行在Jetty、Tomcat等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST方法向 Solr 服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据xml文档添加、删除、更新索引。Solr 搜索只需要发送 HTTP GET 请求,然后对 Solr 返回Xml、json等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。
solr是基于lucene开发企业级搜索服务器,实际上就是封装了lucene。
Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。
Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。人们经常提到信息检索程序库,虽然与搜索引擎有关,但不应该将信息检索程序库与搜索引擎相混淆。
Lucene是一个全文检索引擎的架构。那什么是全文搜索引擎?
全文搜索引擎是名副其实的搜索引擎,国外具代表性的有Google、Fast/AllTheWeb、AltaVista、Inktomi、Teoma、WiseNut等,国内著名的有百度(Baidu)。它们都是通过从互联网上提取的各个网站的信息(以网页文字为主)而建立的数据库中,检索与用户查询条件匹配的相关记录,然后按一定的排列顺序将结果返回给用户,因此他们是真正的搜索引擎。
从搜索结果来源的角度,全文搜索引擎又可细分为两种,一种是拥有自己的检索程序(Indexer),俗称“蜘蛛”(Spider)程序或“机器人”(Robot)程序,并自建网页数据库,搜索结果直接从自身的数据库中调用,如上面提到的7家引擎;另一种则是租用其他引擎的数据库,并按自定的格式排列搜索结果,如Lycos引擎。
就注意一点,JDK必须不能低于 1.8 最低要求就是1.8
因为是java开发的,所以ES的版本和我们之后对应的java的和jar包的版本必须对应,且要保证JDK环境是正常的
下载
官网地址 :https://www.elastic.co/cn/elasticsearch/
之后解压
查看目录
熟悉目录
bin 启动文件
config 配置文件
log4j2 日志文件
jvm.options jvm的运行参数,内存不足的一定要调整,默认是1g
elasticsearch ES的一些配置 默认 : 9200
lib 相关架构
logs 日志!
modules 功能模块
pluginx 插件
启动查看
访问查看
安装可视化界面 ES head 插件
下载地址 : https://github.com/mobz/elasticsearch-head
之后 配置环境和启动测试
npm install
npm run start
之后启动查看 9100
端口
但是发现,迟迟连接不上,这个是为什么? 跨域问题,端口和端口的访问,于是我们要去配置ES的快去权限开启
http.cors.enabled: ture
http.cors.allow-origin: "*"
之后重启es,连接成功
我们可以创建索引体验一下,我们可以把索引,我们可以暂时当作是一个数据库(索引(库),表(库中的数据)),7.x之后就淘汰了表,这个我们之后的学习就可以了解到哈哈
创建索引查看
这个head就当作我们展示数据的工具
这里面的json是没有格式化的,我们后续用kabanna做
了解 ELK
ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称。市面上也被成为ElasticStack。其中Elasticsearch是一个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。像类似百度、谷歌这种大数据全文搜索引擎的场景都可以使用Elasticsearch作为底层支持框架,可见Elasticsearch提供的搜索能力确实强大,市面上很多时候我们简称Elasticsearch为es。Logstash是ELK的中央数据流引擎,用于从不同目标(文件/数据存储/MQ)收集的不同格式数据,经过过滤后支持输出到不同目的地(文件/MQ/redis/elasticsearch/kafka等)。Kibana可以将elasticsearch的数据通过友好 的页面展示出来,提供实时分析的功能。
市面上很多开发只要提到ELK能够一致说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景,日志分析和收集只是更具有代表性。并非唯一性。
安装Kibana
Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存储在Elasticsearch索引中的数据。使用Kibana,可以通过各种图表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板(dashboard)实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动Elasticsearch索引监测
日志数据清洗 —> 搜索,存储 —> 展示
官网:https://www.elastic.co/cn/kibana
安装注意 : klbanna 要和 ES 的版本要一致
下载完毕后,解压需要一些时间,是一个标准的工程
好处 ELK基本上都是拆箱就可以用了
启动测试
查看解压目录
启动
访问 5601看看i情况
开发工具 Post curl head 谷歌插件
之后我们的命令就在这个klbanna里面
这个时候,全英文就让我们很难受,klbanna也提供了国际化,这个项目十分的优秀
配置汉化
之后重启klbanna就可以了
概述
在前面的学习中,我们已经掌握了es是什么,同时也把es的服务已经安装启动,那么es是如何去存储数据,数据结构是什么,又是如何实现搜索的呢?我们先来聊聊ElasticSearch的相关概念吧!
集群,节点,索引,类型,文档,分片,映射是什么?
一切都是json
elasticsearch是面向文档,关系行数据库 和 elasticsearch 客观的对比!一切都是JSON!
Relational DB | Elasticsearch |
---|---|
数据库(database) | 索引(indices) |
表(tables) | types |
行(rows) | documents |
字段(columns) | fields |
elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多 个文档(行),每个文档中又包含多个字段(列)。
物理设计:
elasticsearch 在后台把每个索引划分成多个分片,每分分片可以在集群中的不同服务器间迁移
一个人就是一个集群!默认的集群名称就是 elaticsearh
逻辑设计:
一个索引类型中,包含多个文档,比如说文档1,文档2。 当我们索引一篇文档时,可以通过这样的一各顺序找到 它: 索引 ▷ 类型 ▷ 文档ID ,通过这个组合我们就能索引到某个具体的文档。 注意:ID不必是整数,实际上它是个字 符串。
文档
就是我们的一条条数据
user
1 zhangsan 18
2 kuangshen 3
之前说elasticsearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,elasticsearch中,文档有几个 重要属性 :
尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符 串也可以是整形。因为elasticsearch会保存字段和类型之间的映射及其他的设置。这种映射具体到每个映射的每种类型,这也是为什么在elasticsearch中,类型有时候也称为映射类型。
类型
类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。 类型中对于字段的定义称为映射,比如 name 映 射为字符串类型。 我们说文档是无模式的,它们不需要拥有映射中所定义的所有字段,比如新增一个字段,那么elasticsearch是怎么做的呢?elasticsearch会自动的将新字段加入映射,但是这个字段的不确定它是什么类型,elasticsearch就开始猜,如果这个值是18,那么elasticsearch会认为它是整形。 但是elasticsearch也可能猜不对, 所以最安全的方式就是提前定义好所需要的映射,这点跟关系型数据库殊途同归了,先定义好字段,然后再使用,别 整什么幺蛾子。
索引
就是数据库!
索引是映射类型的容器,elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。 然后它们被存储到了各个分片上了。 我们来研究下分片是如何工作的。
物理设计 :节点和分片 如何工作
一个集群至少有一个节点,而一个节点就是一个elasricsearch进程,节点可以有多个索引默认的,如果你创建索引,那么索引将会有个5个分片 ( primary shard ,又称主分片 ) 构成的,每一个主分片会有一个副本 ( replica shard ,又称复制分片 )
上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同一个节点内,这样有利于某个节点挂掉 了,数据也不至于丢失。 实际上,一个分片是一个Lucene索引,一个包含倒排索引的文件目录,倒排索引的结构使 得elasticsearch在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。 不过,等等,倒排索引是什 么鬼?
倒排索引
elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索, 一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。 例如,现在有两个文档, 每个文档包含如下内容:
Study every day, good good up to forever # 文档1包含的内容
To forever, study every day, good good up # 文档2包含的内容
为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重 复的词条的排序列表,然后列出每个词条出现在哪个文档 :
term | doc_1 | doc_2 |
---|---|---|
Study | √ | x |
To | x | x |
every | √ | √ |
forever | √ | √ |
day | √ | √ |
study | x | √ |
good | √ | √ |
every | √ | √ |
to | √ | x |
up | √ | √ |
现在,我们试图搜索 to forever,只需要查看包含每个词条的文档 score
term | doc_1 | doc_2 |
---|---|---|
to | √ | × |
forever | √ | √ |
total | 2 | 1 |
两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。
再来看一个示例,比如我们通过博客标签来搜索博客文章。那么倒排索引列表就是这样的一个结构 :
如果要搜索含有 python 标签的文章,那相对于查找所有原始数据而言,查找倒排索引后的数据将会快的多。只需要 查看标签这一栏,然后获取相关的文章ID即可。完全过滤掉无关的所有数据,提高效率!
elasticsearch的索引和Lucene的索引对比
在elasticsearch中, 索引 (库)这个词被频繁使用,这就是术语的使用。 在elasticsearch中,索引被分为多个分片,每份 分片是一个Lucene的索引。所以一个elasticsearch索引是由多个Lucene索引组成的。别问为什么,谁让elasticsearch使用Lucene作为底层呢! 如无特指,说起索引都是指elasticsearch的索引。
什么是IK分词器?
分词:即把一段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词,比如 “我爱狂神” 会被分为"我",“爱”,“狂”,“神”,这显然是不符合要求的,所以我们需要安装中文分词器ik来解决这个问题。
如果要使用中文,建议使用ik分词器!
IK提供了两个分词算法:ik_smart 和 ik_max_word,其中 ik_smart 为最少切分,ik_max_word为最细粒度划分!
安装
查看不同的分词效果
其中 ik_smart 为最少切分
ik_max_word为最细粒度划分!穷尽词库的可能!字典!
我们输入 超级喜欢狂神说Java
发现问题:狂神说被拆开了!
这种自己需要的词,需要自己加到我们的分词器的字典中!
ik 分词器增加自己的配置!
重启es,看细节!
再次测试一下狂神说,看下效果!
一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件。它主要用于客户端和服务器交互类的软件。基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。
基本Rest命令说明:
method | url地址 | 描述 |
---|---|---|
PUT | localhost:9200/索引名称/类型名称/文档id | 创建文档(指定文档id) |
POST | localhost:9200/索引名称/类型名称 | 创建文档(随机文档id) |
POST | localhost:9200/索引名称/类型名称/文档id/_update | 修改文档 |
DELETE | localhost:9200/索引名称/类型名称/文档id | 删除文档 |
GET | localhost:9200/索引名称/类型名称/文档id | 查询文档通过文档id |
POST | localhost:9200/索引名称/类型名称/_search | 查询所有数据 |
PUT /索引名/~类型名~/文档id
{请求体}
完成了自动增加了索引!数据也成功的添加了,这就是我说大家在初期可以把它当做数据库学习的原因!
那么 name 这个字段用不用指定类型呢。毕竟我们关系型数据库 是需要指定类型的啊 !
获得这个规则! 可以通过 GET 请求获取具体的信息!
如果自己的文档字段没有指定,那么es 就会给我们默认配置字段类型!
扩展: 通过命令 elasticsearch 索引情况! 通过get _cat/ 可以获得es的当前的很多信息!
修改 提交还是使用PUT 即可! 然后覆盖!最新办法!
曾经!
现在的方法!
删除索引!
通过DELETE 命令实现删除、 根据你的请求来判断是删除索引还是删除文档记录!
使用RESTFUL 风格是我们ES推荐大家使用的!
基本操作
PUT /kuangshen/user/1
{
"name": "狂神说",
"age": 23,
"desc": "一顿操作猛如虎,一看工资2500",
"tags": ["技术宅","温暖","直男"]
}
GET kuangshen/user/1
简答的条件查询,可以根据默认的映射规则,产生基本的查询!
输出结果,不想要那么多!
我们之后使用Java操作es ,所有的方法和对象就是这里面的 key!
排序!
分页查询!
数据下标还是从0开始的,和学的所有数据结构是一样的!
/search/{current}/{pagesize}
布尔值查询
must (and),所有的条件都要符合 where id = 1 and name = xxx
should(or),所有的条件都要符合 where id = 1 or name = xxx
must_not (not)
过滤器 filter
匹配多个条件!
精确查询!
term 查询是直接通过倒排索引指定的词条进程精确查找的!
关于分词:
两个类型 text
keyword
多个值匹配精确查询
高亮查询!
PUT /test1/type1/1
{
"name" : "小冷",
"age" : 3
}
PUT /test2
{
"mappings": {
"properties": {
"name": {
"type": "text"
},
"age":{
"type": "long"
},
"birthDay":{
"type": "date"
}
}
}
}
GET test2
PUT /test3/_doc/1
{
"name": "",
"age":8,
"brith":"2004-02-08"
}
POST /test3/_doc/1/_update
{
"doc":{
"name": "小冷"
}
}
GET test3
PUT /lhy/user/1
{
"name": "狂神说",
"age": 23,
"desc": "一顿操作猛如虎,一看工资2500",
"tags": ["技术宅","温暖","直男"]
}
PUT /lhy/user/2
{
"name": "法外狂徒张三",
"age": 30,
"desc": "罗老师手下的得力干将",
"tags": ["身体好","懂法律","难判刑"]
}
PUT /lhy/user/2
{
"name": "法外狂徒张三",
"age": 19,
"desc": "罗老师手下的得力干将",
"tags": ["身体好","懂法律","难判刑"]
}
POST /lhy/user/2/_update
{
"doc":{
"name": "张三"
}
}
PUT /lhy/user/3
{
"name": "狂神说前端",
"age": 23,
"desc": "前端特效大杀手",
"tags": ["游戏强","抗压强","007"]
}
GET /lhy/user/2
GET lhy/user/_search?q=name:狂神说
GET lhy/user/_search
{
"query":{
"match": {
"name": "狂神"
}
},
"sort": [
{
"age": {
"order": "asc"
}
}
],
"from": 0,
"size": 1
}
#boolean
GET lhy/user/_search
{
"query":{
"bool":{
"should": [
{
"match": {
"name": "狂神说"
}
},
{
"match": {
"age": 23
}
}
]
}
}
}
#没有什么,相当与 not
GET lhy/user/_search
{
"query":{
"bool":{
"must_not": [
{
"match": {
"name": "狂神说"
}
}
]
}
}
}
#过滤器filter 筛选
GET lhy/user/_search
{
"query":{
"bool":{
"must": [
{
"match": {
"name": "狂神说"
}
}
],
"filter": [
{
"range": {
"age": {
"lt": 20
}
}
}
]
}
}
}
GET lhy/user/_search
{
"query":{
"bool":{
"must": [
{
"match": {
"tags": "技术 男 身体 007"
}
}
]
}
}
}
#精确查询和text keyword 两种类型的细节
PUT testdb
{
"mappings": {
"properties": {
"name":{
"type": "text"
},
"desc":{
"type": "keyword"
}
}
}
}
PUT testdb/_doc/1
{
"name":"小冷学java",
"desc":"java真的是个好玩的语言"
}
PUT testdb/_doc/2
{
"name":"小冷学java",
"desc":"java真的是个好玩的语言2"
}
GET _analyze
{
"analyzer": "keyword" ,
"text": "小冷"
}
GET _analyze
{
"analyzer": "standard" ,
"text": "小冷"
}
GET testdb/_search
{
"query": {
"term": {
"desc": "java真的是个好玩的语言"
}
}
}
#高亮查询
GET lhy/user/_search
{
"query": {
"match": {
"name":"狂神"
}
},
"highlight": {
"fields": {
"name":{}
}
}
}
找官方文档!
配置基本的项目
问题:一定要保证 我们的导入的依赖和我们的es 版本一致
源码中提供对象!
虽然这里导入3个类,静态内部类,核心类就一个!
/**
* Elasticsearch rest client infrastructure configurations.
*
* @author Brian Clozel
* @author Stephane Nicoll
*/
class RestClientConfigurations {
@Configuration(proxyBeanMethods = false)
static class RestClientBuilderConfiguration {
// RestClientBuilder
@Bean
@ConditionalOnMissingBean
RestClientBuilder elasticsearchRestClientBuilder(RestClientProperties
properties,
ObjectProvider<RestClientBuilderCustomizer> builderCustomizers) {
HttpHost[] hosts =
properties.getUris().stream().map(HttpHost::create).toArray(HttpHost[]::new);
RestClientBuilder builder = RestClient.builder(hosts);
PropertyMapper map = PropertyMapper.get();
map.from(properties::getUsername).whenHasText().to((username) -> {
CredentialsProvider credentialsProvider = new
BasicCredentialsProvider();
Credentials credentials = new
UsernamePasswordCredentials(properties.getUsername(),
properties.getPassword());
credentialsProvider.setCredentials(AuthScope.ANY, credentials);
builder.setHttpClientConfigCallback(
(httpClientBuilder) ->
httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider));
});
builder.setRequestConfigCallback((requestConfigBuilder) -> {
map.from(properties::getConnectionTimeout).whenNonNull().asInt(Duration::toMill
is)
.to(requestConfigBuilder::setConnectTimeout);
map.from(properties::getReadTimeout).whenNonNull().asInt(Duration::toMillis)
.to(requestConfigBuilder::setSocketTimeout);
return requestConfigBuilder;
});
builderCustomizers.orderedStream().forEach((customizer) ->
customizer.customize(builder));
return builder;
}
}
@Configuration(proxyBeanMethods = false)
@ConditionalOnClass(RestHighLevelClient.class)
static class RestHighLevelClientConfiguration {
// RestHighLevelClient 高级客户端,也是我们这里要讲,后面项目会用到的客户端
@Bean
@ConditionalOnMissingBean
RestHighLevelClient elasticsearchRestHighLevelClient(RestClientBuilder
restClientBuilder) {
return new RestHighLevelClient(restClientBuilder);
}
@Bean
@ConditionalOnMissingBean
RestClient elasticsearchRestClient(RestClientBuilder builder,
ObjectProvider<RestHighLevelClient> restHighLevelClient) {
RestHighLevelClient client = restHighLevelClient.getIfUnique();
if (client != null) {
return client.getLowLevelClient();
}
return builder.build();
}
}
@Configuration(proxyBeanMethods = false)
static class RestClientFallbackConfiguration {
// RestClient 普通的客户端!
@Bean
@ConditionalOnMissingBean
RestClient elasticsearchRestClient(RestClientBuilder builder) {
return builder.build();
}
}
}
具体的Api测试!
@SpringBootTest
class KuangshenEsApiApplicationTests {
// 面向对象来操作
@Autowired
@Qualifier("restHighLevelClient")
private RestHighLevelClient client;
// 测试索引的创建 Request PUT kuang_index
@Test
void testCreateIndex() throws IOException {
// 1、创建索引请求
CreateIndexRequest request = new CreateIndexRequest("kuang_index");
// 2、客户端执行请求 IndicesClient,请求后获得响应
CreateIndexResponse createIndexResponse =
client.indices().create(request, RequestOptions.DEFAULT);
System.out.println(createIndexResponse);
}
// 测试获取索引,判断其是否存在
@Test
void testExistIndex() throws IOException {
GetIndexRequest request = new GetIndexRequest("kuang_index2");
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
}
// 测试删除索引
@Test
void testDeleteIndex() throws IOException {
DeleteIndexRequest request = new DeleteIndexRequest("kuang_index");
// 删除
AcknowledgedResponse delete = client.indices().delete(request,
RequestOptions.DEFAULT);
System.out.println(delete.isAcknowledged());
}
// 测试添加文档
@Test
void testAddDocument() throws IOException {
// 创建对象
User user = new User("狂神说", 3);
// 创建请求
IndexRequest request = new IndexRequest("kuang_index");
// 规则 put /kuang_index/_doc/1
request.id("1");
request.timeout(TimeValue.timeValueSeconds(1));
request.timeout("1s");
// 将我们的数据放入请求 json
request.source(JSON.toJSONString(user), XContentType.JSON);
// 客户端发送请求 , 获取响应的结果
IndexResponse indexResponse = client.index(request,
RequestOptions.DEFAULT);
System.out.println(indexResponse.toString()); //
System.out.println(indexResponse.status()); // 对应我们命令返回的状态
CREATED
}
// 获取文档,判断是否存在 get /index/doc/1
@Test
void testIsExists() throws IOException {
GetRequest getRequest = new GetRequest("kuang_index", "1");
// 不获取返回的 _source 的上下文了
getRequest.fetchSourceContext(new FetchSourceContext(false));
getRequest.storedFields("_none_");
boolean exists = client.exists(getRequest, RequestOptions.DEFAULT);
System.out.println(exists);
}
// 获得文档的信息
@Test
void testGetDocument() throws IOException {
GetRequest getRequest = new GetRequest("kuang_index", "1");
GetResponse getResponse = client.get(getRequest,
RequestOptions.DEFAULT);
System.out.println(getResponse.getSourceAsString()); // 打印文档的内容
System.out.println(getResponse); // 返回的全部内容和命令式一样的
}
// 更新文档的信息
@Test
void testUpdateRequest() throws IOException {
UpdateRequest updateRequest = new UpdateRequest("kuang_index","1");
updateRequest.timeout("1s");
User user = new User("狂神说Java", 18);
updateRequest.doc(JSON.toJSONString(user),XContentType.JSON);
UpdateResponse updateResponse = client.update(updateRequest,
RequestOptions.DEFAULT);
System.out.println(updateResponse.status());
}
// 删除文档记录
@Test
void testDeleteRequest() throws IOException {
DeleteRequest request = new DeleteRequest("kuang_index","1");
request.timeout("1s");
DeleteResponse deleteResponse = client.delete(request,
RequestOptions.DEFAULT);
System.out.println(deleteResponse.status());
}
// 特殊的,真的项目一般都会批量插入数据!
@Test
void testBulkRequest() throws IOException {
BulkRequest bulkRequest = new BulkRequest();
bulkRequest.timeout("10s");
ArrayList<User> userList = new ArrayList<>();
userList.add(new User("kuangshen1",3));
userList.add(new User("kuangshen2",3));
userList.add(new User("kuangshen3",3));
userList.add(new User("qinjiang1",3));
userList.add(new User("qinjiang1",3));
userList.add(new User("qinjiang1",3));
// 批处理请求
for (int i = 0; i < userList.size() ; i++) {
// 批量更新和批量删除,就在这里修改对应的请求就可以了
bulkRequest.add(
new IndexRequest("kuang_index")
.id(""+(i+1))
.source(JSON.toJSONString(userList.get(i)),XContentType.JSON));
}
BulkResponse bulkResponse = client.bulk(bulkRequest,
RequestOptions.DEFAULT);
System.out.println(bulkResponse.hasFailures()); // 是否失败,返回 false 代表
成功!
}
// 查询
// SearchRequest 搜索请求
// SearchSourceBuilder 条件构造
// HighlightBuilder 构建高亮
// TermQueryBuilder 精确查询
// MatchAllQueryBuilder
// xxx QueryBuilder 对应我们刚才看到的命令!
@Test
void testSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("kuang_index");
// 构建搜索条件
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.highlighter()
// 查询条件,我们可以使用 QueryBuilders 工具来实现
// QueryBuilders.termQuery 精确
// QueryBuilders.matchAllQuery() 匹配所有
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("name",
"qinjiang1");
// MatchAllQueryBuilder matchAllQueryBuilder =
QueryBuilders.matchAllQuery();
sourceBuilder.query(termQueryBuilder);
sourceBuilder.timeout(new TimeValue(60,TimeUnit.SECONDS));
searchRequest.source(sourceBuilder);
SearchResponse searchResponse = client.search(searchRequest,
RequestOptions.DEFAULT);
System.out.println(JSON.toJSONString(searchResponse.getHits()));
System.out.println("=================================");
for (SearchHit documentFields : searchResponse.getHits().getHits()) {
System.out.println(documentFields.getSourceAsMap());
}
}
}
新建jd boot的项目
之后我们设置端口和把 thymeleaf的缓存关掉,之后访问一下 index 查看
代码已开源 ,这里只展示核心功能
我们的思路就是暂时2不去使用数据库 用JSONP来拿到页面数据 存入ES
数据怎么来?从数据库获取,消息队列中获取,都可以成为数据源 爬虫!
需要使用爬虫来爬取数据
public List parseJD(String keywords) throws IOException {
// https://search.jd.com/Search?keyword=java
// 前提需要联网
String url = "https://search.jd.com/Search?keyword=" + keywords + "&enc=utf-8";
//解析网页(jsoup返回document就是js,浏览器的Document对象)
Document document = Jsoup.parse(new URL(url), 30000);
//所有我们再js中可以操作的,在这里都可以
Element element = document.getElementById("J_goodsList");
//System.out.println(element.html());
//获取所有的li标签
Elements li_elements = document.getElementsByTag("li");
ArrayList goodsList = new ArrayList<>();
for (Element el : li_elements) {
if (el.attr("class").equalsIgnoreCase("gl-item")) {
String img = el.getElementsByTag("img").eq(0).attr("data-lazy-img");
String price = el.getElementsByClass("p-price").eq(0).text();
String title = el.getElementsByClass("p-name").eq(0).text();
content content = new content();
content.setTitle(title);
content.setImg(img);
content.setPrice(price);
goodsList.add(content);
}
}
return goodsList;
}
//获取数据实现搜索高亮功能
public List<Map<String, Object>> getContentHighContent(String keywords, int pageNo, int pageSize) throws IOException {
if (pageNo < 1) {
pageNo = 1;
}
//条件搜索
SearchRequest searchRequest = new SearchRequest("jd_goods");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.from(pageNo);
searchSourceBuilder.size(pageSize);
//精确查询
MatchBoolPrefixQueryBuilder queryBuilder = QueryBuilders.matchBoolPrefixQuery("title", keywords);
searchSourceBuilder.query(queryBuilder);
searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
//配置高亮
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("title");
highlightBuilder.requireFieldMatch(false); //多个高亮关闭
highlightBuilder.preTags("");
highlightBuilder.postTags("");
searchSourceBuilder.highlighter(highlightBuilder);
//执行搜索
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = Client.search(searchRequest, RequestOptions.DEFAULT);
ArrayList<Map<String, Object>> list = new ArrayList<>();
for (SearchHit documentFields : searchResponse.getHits().getHits()) {
//解析高亮的字段
Map<String, HighlightField> highlightFields = documentFields.getHighlightFields();
HighlightField title = highlightFields.get("title");
Map<String, Object> sourceAsMap = documentFields.getSourceAsMap();
if (title != null) {
//取出全部的高亮title
Text[] texts = title.fragments();
String name = "";
//拼接成新字段
for (Text text : texts) {
name += text;
}
//如果需要就替换原来获取到的title
sourceAsMap.put("title", name);
}
list.add(sourceAsMap);
}
return list;
}
之后我们需要用前端
vue 去解析html
<!--标题-->
<p class="productTitle">
<a v-html="result.title"></a>
</p>