首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >用 Pandas 做 ETL,不要太快

用 Pandas 做 ETL,不要太快

作者头像
somenzz
发布2022-04-07 20:10:10
发布2022-04-07 20:10:10
3.9K0
举报
文章被收录于专栏:Python七号Python七号

久违了,朋友们,来篇干货。

ETL 的全称是 extract, transform, load,意思就是:提取、转换、 加载。ETL 是数据分析中的基础工作,获取非结构化或难以使用的数据,把它变为干净、结构化的数据,比如导出 csv 文件,为后续的分析提供数据基础。

本文对电影数据做 ETL 为例,分享一下 Pandas 的高效使用。完整的代码请在公众号「Python七号」回复「etl」获取。

1、提取数据

这里从电影数据 API 请求数据。在开始之前,你需要获得 API 密钥来访问 API可以在这里[1]找到获取密钥的说明。

一旦你有了密钥,需要确保你没有把它直接放入你的源代码中,因此你需要创建 ETL 脚本的同一目录中创建一个名为 config.py 的文件,将此放入文件:

代码语言:javascript
复制
#config.py
api_key = <YOUR API KEY HERE>

如果要将代码发布到任何地方,应该将 config.py 放入 .gitignore 或类似文件中,以确保它不会被推送到任何远程存储库中。

还可以将 API 密钥存储为环境变量,或使用其他方法隐藏它。目标是保护它不暴露在 ETL 脚本中。

现在创建一个名为 tmdb.py 的文件,并导入必要的依赖:

代码语言:javascript
复制
import pandas as pd
import requests
import config

向 API 发送单个 GET 请求的方法。在响应中,我们收到一条 JSON 记录,其中包含我们指定的 movie_id:

代码语言:javascript
复制
API_KEY = config.api_key
url = 'https://api.themoviedb.org/3/movie/{}?api_key={}'.format(movie_id, API_KEY)

r = requests.get(url)

这里我们请求 6 部电影,电影 movie_id 从 550 到 555 不等。我们创建一个循环,一次请求每部电影一部,并将响应附加到列表中:

代码语言:javascript
复制
response_list = []
API_KEY = config.api_key

for movie_id in range(550,556):
  url = 'https://api.themoviedb.org/3/movie/{}?api_key={}'.format(movie_id, API_KEY)
  r = requests.get(url)
  response_list.append(r.json())

现在我们拿到了 response_list 这样复杂冗长的 JSON 数据,这里使用 from_dict() 从记录中创建 Pandas 的 DataFrame 对象:

代码语言:javascript
复制
df = pd.DataFrame.from_dict(response_list)

如果在 jupyter 上输出一下 df,你会看到这样一个数据帧:

至此,数据提取完毕。

2、转换

我们并不需要提取数据的所有这些列,所以接下来选择我们需要使用的列。

假如以下列是我们感兴趣的:

代码语言:javascript
复制
budget
id
imdb_id
genres
original_title
release_date
revenue
runtime

创建一个名为 df_columns 的列名称列表,以便从主数据帧中选择所需的列。

代码语言:javascript
复制
df_columns = ['budget', 'genres', 'id', 'imdb_id', 'original_title', 'release_date', 'revenue', 'runtime']

请注意,有一个 genres 列(表示电影的体裁,类型)是长这样的:

这是一个 JSON 格式的列,我们希望扩展它。

一种比较直观的方法是将 genres 内的分类分解为多个列,如果某个电影属于这个分类,那么就在该列赋值 1,否则就置 0,就像这样:

现在我们用 pandas 来实现这个扩展效果。

首先扁平化这个 JSON 列表:

代码语言:javascript
复制
genres_list = df['genres'].tolist()
flat_list = [item for sublist in genres_list for item in sublist]

接下来,我们创建一个 genres_all 的临时列,作为电影类别的代表,我们只需要 genres 内的 name 属性,稍后把它扩展为单独的列:

代码语言:javascript
复制
result = []
for l in genres_list:
    r = []
    for d in l:
        r.append(d['name'])
    result.append(r)
df = df.assign(genres_all=result)

为了完整的保存 genres 类型表,我们把它单独做为一个表:电影类型表:

代码语言:javascript
复制
df_genres = pd.DataFrame.from_records(flat_list).drop_duplicates()

它是这样的:

接下来,将类型名称附加到 df_columns 中,然后删除 genres 列:

代码语言:javascript
复制
df_columns = ['budget', 'id', 'imdb_id', 'original_title', 'release_date', 'revenue', 'runtime']
df_genre_columns = df_genres['name'].to_list()
df_columns.extend(df_genre_columns)

s = df['genres_all'].explode()
df = df.join(pd.crosstab(s.index, s))

代码的最后两行,使用了 explode、crosstab 函数来扩展多个列,其效果就是如果电影属于某个类型,该行的值就为 1,结果就是这样:

关于日期时间,我们希望将日期扩展为年、月、日、周,像这样:

那么以下代码就是干这个的:

代码语言:javascript
复制
df['release_date'] = pd.to_datetime(df['release_date'])
df['day'] = df['release_date'].dt.day
df['month'] = df['release_date'].dt.month
df['year'] = df['release_date'].dt.year
df['day_of_week'] = df['release_date'].dt.day_name()
df_time_columns = ['id', 'release_date', 'day', 'month', 'year', 'day_of_week']

3、加载

加载就很简单了,将 DataFrame 导出到 excel 或者 csv 即可。

代码语言:javascript
复制
df[df_columns].to_csv('tmdb_movies.csv', index=False)
df_genres.to_csv('tmdb_genres.csv', index=False)
df[df_time_columns].to_csv('tmdb_datetimes.csv', index=False)

如果要导出 excel,那么就用 to_excel 函数。

最后的话

Pandas 是处理 excel 或者数据分析的利器,ETL 必备工具,本文以电影数据为例,分享了 Pandas 的常见用法,如果有帮助的话还请点个在看给更多的朋友,再不济,点个赞也行。

参考资料

[1]

这里: https://developers.themoviedb.org/3/getting-started/authentication

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python七号 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、提取数据
  • 2、转换
  • 3、加载
  • 最后的话
    • 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档