整数集合(intset)是集合键的底层实现之一: 当一个集合只包含整数值元素, 并且这个集合的元素数量不多时, Redis 就会使用整数集合作为集合键的底层实现。整数集合涉及的文件是intset.h和intset.c
整数集合(intset)是 Redis 用于保存整数值的集合抽象数据结构, 它可以保存类型为 int16_t 、 int32_t 或者 int64_t 的整数值, 并且保证集合中不会出现重复元素。实现代码如下:
typedef struct intset {
// 编码方式
uint32_t encoding;
// 集合包含的元素数量
uint32_t length;
// 保存元素的数组
int8_t contents[];
} intset;
contents 数组是整数集合的底层实现: 整数集合的每个元素都是 contents 数组的一个数组项(item), 各个项在数组中按值的大小从小到大有序地排列, 并且数组中不包含任何重复项。 length 属性记录了整数集合包含的元素数量, 也即是 contents 数组的长度。 虽然 intset 结构将 contents 属性声明为 int8_t 类型的数组, 但实际上 contents 数组并不保存任何 int8_t 类型的值 —— contents 数组的真正类型取决于 encoding 属性的值,共有下面三种:
/* Note that these encodings are ordered, so:
* INTSET_ENC_INT16 < INTSET_ENC_INT32 < INTSET_ENC_INT64. */
/*
* intset 的编码方式
*/
#define INTSET_ENC_INT16 (sizeof(int16_t))
#define INTSET_ENC_INT32 (sizeof(int32_t))
#define INTSET_ENC_INT64 (sizeof(int64_t))
如果 encoding 属性的值为 INTSET_ENC_INT16 , 那么 contents 就是一个 int16_t 类型的数组, 数组里的每个项都是一个 int16_t 类型的整数值 (最小值为 -32,768 ,最大值为 32,767 )。 如果 encoding 属性的值为 INTSET_ENC_INT32 , 那么 contents 就是一个 int32_t 类型的数组, 数组里的每个项都是一个 int32_t 类型的整数值 (最小值为 -2,147,483,648 ,最大值为 2,147,483,647 )。 如果 encoding 属性的值为 INTSET_ENC_INT64 , 那么 contents 就是一个 int64_t 类型的数组, 数组里的每个项都是一个 int64_t 类型的整数值 (最小值为 -9,223,372,036,854,775,808 ,最大值为 9,223,372,036,854,775,807 )。 数组的encoding 属性是取数组里每一个元素编码方式的最大值,如下图所示:
虽然 contents 数组保存的四个整数值中, 只有 -2675256175807981027 是真正需要用 int64_t 类型来保存的, 而其他的 1 、 3 、 5 三个值都可以用 int16_t 类型来保存, 不过根据整数集合的规则, 编码方式仍然是按照 int64_t类型保存。
根据值确定编码方式的函数如下所示:
/* Return the required encoding for the provided value.
*
* 返回适用于传入值 v 的编码方式
*
* T = O(1)
*/
static uint8_t _intsetValueEncoding(int64_t v) {
if (v < INT32_MIN || v > INT32_MAX)
return INTSET_ENC_INT64;
else if (v < INT16_MIN || v > INT16_MAX)
return INTSET_ENC_INT32;
else
return INTSET_ENC_INT16;
}
根据值确定编码方式的函数如下所示:
/* Return the required encoding for the provided value.
*
* 返回适用于传入值 v 的编码方式
*
* T = O(1)
*/
static uint8_t _intsetValueEncoding(int64_t v) {
if (v < INT32_MIN || v > INT32_MAX)
return INTSET_ENC_INT64;
else if (v < INT16_MIN || v > INT16_MAX)
return INTSET_ENC_INT32;
else
return INTSET_ENC_INT16;
}
根据给定的编码方式 enc ,返回集合的底层数组在 pos 索引上的元素:
static int64_t _intsetGetEncoded(intset *is, int pos, uint8_t enc) {
int64_t v64;
int32_t v32;
int16_t v16;
// ((ENCODING*)is->contents) 首先将数组转换回被编码的类型
// 然后 ((ENCODING*)is->contents)+pos 计算出元素在数组中的正确位置
// 之后 member(&vEnc, ..., sizeof(vEnc)) 再从数组中拷贝出正确数量的字节
// 如果有需要的话, memrevEncifbe(&vEnc) 会对拷贝出的字节进行大小端转换
// 最后将值返回
if (enc == INTSET_ENC_INT64) {
memcpy(&v64,((int64_t*)is->contents)+pos,sizeof(v64));
memrev64ifbe(&v64);
return v64;
} else if (enc == INTSET_ENC_INT32) {
memcpy(&v32,((int32_t*)is->contents)+pos,sizeof(v32));
memrev32ifbe(&v32);
return v32;
} else {
memcpy(&v16,((int16_t*)is->contents)+pos,sizeof(v16));
memrev16ifbe(&v16);
return v16;
}
}
根据集合的编码方式,将底层数组在 pos 位置上的值设为 value,代码如下:
static void _intsetSet(intset *is, int pos, int64_t value) {
// 取出集合的编码方式
uint32_t encoding = intrev32ifbe(is->encoding);
// 根据编码 ((Enc_t*)is->contents) 将数组转换回正确的类型
// 然后 ((Enc_t*)is->contents)[pos] 定位到数组索引上
// 接着 ((Enc_t*)is->contents)[pos] = value 将值赋给数组
// 最后, ((Enc_t*)is->contents)+pos 定位到刚刚设置的新值上
// 如果有需要的话, memrevEncifbe 将对值进行大小端转换
if (encoding == INTSET_ENC_INT64) {
((int64_t*)is->contents)[pos] = value;
memrev64ifbe(((int64_t*)is->contents)+pos);
} else if (encoding == INTSET_ENC_INT32) {
((int32_t*)is->contents)[pos] = value;
memrev32ifbe(((int32_t*)is->contents)+pos);
} else {
((int16_t*)is->contents)[pos] = value;
memrev16ifbe(((int16_t*)is->contents)+pos);
}
}
在集合 is 的底层数组中查找值 value 所在的索引,成功找到 value 时,函数返回 1 ,并将 *pos 的值设为 value 所在的索引。当在数组中没找到 value 时,返回 0 。并将 *pos 的值设为 value 可以插入到数组中的位置,代码如下:
static uint8_t intsetSearch(intset *is, int64_t value, uint32_t *pos) {
int min = 0, max = intrev32ifbe(is->length)-1, mid = -1;
int64_t cur = -1;
/* The value can never be found when the set is empty */
// 处理 is 为空时的情况
if (intrev32ifbe(is->length) == 0) {
if (pos) *pos = 0;
return 0;
} else {
/* Check for the case where we know we cannot find the value,
* but do know the insert position. */
// 因为底层数组是有序的,如果 value 比数组中最后一个值都要大
// 那么 value 肯定不存在于集合中,
// 并且应该将 value 添加到底层数组的最末端
if (value > _intsetGet(is,intrev32ifbe(is->length)-1)) {
if (pos) *pos = intrev32ifbe(is->length);
return 0;
// 因为底层数组是有序的,如果 value 比数组中最前一个值都要小
// 那么 value 肯定不存在于集合中,
// 并且应该将它添加到底层数组的最前端
} else if (value < _intsetGet(is,0)) {
if (pos) *pos = 0;
return 0;
}
}
// 在有序数组中进行二分查找
// T = O(log N)
while(max >= min) {
mid = (min+max)/2;
cur = _intsetGet(is,mid);
if (value > cur) {
min = mid+1;
} else if (value < cur) {
max = mid-1;
} else {
break;
}
}
// 检查是否已经找到了 value
if (value == cur) {
if (pos) *pos = mid;
return 1;
} else {
if (pos) *pos = min;
return 0;
}
}
集合中升级编码方式代码如下:
/* Upgrades the intset to a larger encoding and inserts the given integer.
*
* 根据值 value 所使用的编码方式,对整数集合的编码进行升级,
* 并将值 value 添加到升级后的整数集合中。
*
* 返回值:添加新元素之后的整数集合
*
* T = O(N)
*/
static intset *intsetUpgradeAndAdd(intset *is, int64_t value) {
// 当前的编码方式
uint8_t curenc = intrev32ifbe(is->encoding);
// 新值所需的编码方式
uint8_t newenc = _intsetValueEncoding(value);
// 当前集合的元素数量
int length = intrev32ifbe(is->length);
// 根据 value 的值,决定是将它添加到底层数组的最前端还是最后端
// 注意,因为 value 的编码比集合原有的其他元素的编码都要大
// 所以 value 要么大于集合中的所有元素,要么小于集合中的所有元素
// 因此,value 只能添加到底层数组的最前端或最后端
int prepend = value < 0 ? 1 : 0;
/* First set new encoding and resize */
// 更新集合的编码方式
is->encoding = intrev32ifbe(newenc);
// 根据新编码对集合(的底层数组)进行空间调整
// T = O(N)
is = intsetResize(is,intrev32ifbe(is->length)+1);
/* Upgrade back-to-front so we don't overwrite values.
* Note that the "prepend" variable is used to make sure we have an empty
* space at either the beginning or the end of the intset. */
// 根据集合原来的编码方式,从底层数组中取出集合元素
// 然后再将元素以新编码的方式添加到集合中
// 当完成了这个步骤之后,集合中所有原有的元素就完成了从旧编码到新编码的转换
// 因为新分配的空间都放在数组的后端,所以程序先从后端向前端移动元素
// 举个例子,假设原来有 curenc 编码的三个元素,它们在数组中排列如下:
// | x | y | z |
// 当程序对数组进行重分配之后,数组就被扩容了(符号 ? 表示未使用的内存):
// | x | y | z | ? | ? | ? |
// 这时程序从数组后端开始,重新插入元素:
// | x | y | z | ? | z | ? |
// | x | y | y | z | ? |
// | x | y | z | ? |
// 最后,程序可以将新元素添加到最后 ? 号标示的位置中:
// | x | y | z | new |
// 上面演示的是新元素比原来的所有元素都大的情况,也即是 prepend == 0
// 当新元素比原来的所有元素都小时(prepend == 1),调整的过程如下:
// | x | y | z | ? | ? | ? |
// | x | y | z | ? | ? | z |
// | x | y | z | ? | y | z |
// | x | y | x | y | z |
// 当添加新值时,原本的 | x | y | 的数据将被新值代替
// | new | x | y | z |
// T = O(N)
while(length--)
_intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc));
/* Set the value at the beginning or the end. */
// 设置新值,根据 prepend 的值来决定是添加到数组头还是数组尾
if (prepend)
_intsetSet(is,0,value);
else
_intsetSet(is,intrev32ifbe(is->length),value);
// 更新整数集合的元素数量
is->length = intrev32ifbe(intrev32ifbe(is->length)+1);
return is;
}
集合元素移动代码如下:
/*
* 向前或先后移动指定索引范围内的数组元素
*
* 函数名中的 MoveTail 其实是一个有误导性的名字,
* 这个函数可以向前或向后移动元素,
* 而不仅仅是向后
*
* 在添加新元素到数组时,就需要进行向后移动,
* 如果数组表示如下(?表示一个未设置新值的空间):
* | x | y | z | ? |
* |<----->|
* 而新元素 n 的 pos 为 1 ,那么数组将移动 y 和 z 两个元素
* | x | y | y | z |
* |<----->|
* 接着就可以将新元素 n 设置到 pos 上了:
* | x | n | y | z |
*
* 当从数组中删除元素时,就需要进行向前移动,
* 如果数组表示如下,并且 b 为要删除的目标:
* | a | b | c | d |
* |<----->|
* 那么程序就会移动 b 后的所有元素向前一个元素的位置,
* 从而覆盖 b 的数据:
* | a | c | d | d |
* |<----->|
* 最后,程序再从数组末尾删除一个元素的空间:
* | a | c | d |
* 这样就完成了删除操作。
*
* T = O(N)
*/
static void intsetMoveTail(intset *is, uint32_t from, uint32_t to) {
void *src, *dst;
// 要移动的元素个数
uint32_t bytes = intrev32ifbe(is->length)-from;
// 集合的编码方式
uint32_t encoding = intrev32ifbe(is->encoding);
// 根据不同的编码
// src = (Enc_t*)is->contents+from 记录移动开始的位置
// dst = (Enc_t*)is_.contents+to 记录移动结束的位置
// bytes *= sizeof(Enc_t) 计算一共要移动多少字节
if (encoding == INTSET_ENC_INT64) {
src = (int64_t*)is->contents+from;
dst = (int64_t*)is->contents+to;
bytes *= sizeof(int64_t);
} else if (encoding == INTSET_ENC_INT32) {
src = (int32_t*)is->contents+from;
dst = (int32_t*)is->contents+to;
bytes *= sizeof(int32_t);
} else {
src = (int16_t*)is->contents+from;
dst = (int16_t*)is->contents+to;
bytes *= sizeof(int16_t);
}
// 进行移动
// T = O(N)
memmove(dst,src,bytes);
}
集合元素增加和删除的代码如下:
/* Insert an integer in the intset
*
* 尝试将元素 value 添加到整数集合中。
*
* *success 的值指示添加是否成功:
* - 如果添加成功,那么将 *success 的值设为 1 。
* - 因为元素已存在而造成添加失败时,将 *success 的值设为 0 。
*
* T = O(N)
*/
intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {
// 计算编码 value 所需的长度
uint8_t valenc = _intsetValueEncoding(value);
uint32_t pos;
// 默认设置插入为成功
if (success) *success = 1;
/* Upgrade encoding if necessary. If we need to upgrade, we know that
* this value should be either appended (if > 0) or prepended (if < 0),
* because it lies outside the range of existing values. */
// 如果 value 的编码比整数集合现在的编码要大
// 那么表示 value 必然可以添加到整数集合中
// 并且整数集合需要对自身进行升级,才能满足 value 所需的编码
if (valenc > intrev32ifbe(is->encoding)) {
/* This always succeeds, so we don't need to curry *success. */
// T = O(N)
return intsetUpgradeAndAdd(is,value);
} else {
// 运行到这里,表示整数集合现有的编码方式适用于 value
/* Abort if the value is already present in the set.
* This call will populate "pos" with the right position to insert
* the value when it cannot be found. */
// 在整数集合中查找 value ,看他是否存在:
// - 如果存在,那么将 *success 设置为 0 ,并返回未经改动的整数集合
// - 如果不存在,那么可以插入 value 的位置将被保存到 pos 指针中
// 等待后续程序使用
if (intsetSearch(is,value,&pos)) {
if (success) *success = 0;
return is;
}
// 运行到这里,表示 value 不存在于集合中
// 程序需要将 value 添加到整数集合中
// 为 value 在集合中分配空间
is = intsetResize(is,intrev32ifbe(is->length)+1);
// 如果新元素不是被添加到底层数组的末尾
// 那么需要对现有元素的数据进行移动,空出 pos 上的位置,用于设置新值
// 举个例子
// 如果数组为:
// | x | y | z | ? |
// |<----->|
// 而新元素 n 的 pos 为 1 ,那么数组将移动 y 和 z 两个元素
// | x | y | y | z |
// |<----->|
// 这样就可以将新元素设置到 pos 上了:
// | x | n | y | z |
// T = O(N)
if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1);
}
// 将新值设置到底层数组的指定位置中
_intsetSet(is,pos,value);
// 增一集合元素数量的计数器
is->length = intrev32ifbe(intrev32ifbe(is->length)+1);
// 返回添加新元素后的整数集合
return is;
/* p.s. 上面的代码可以重构成以下更简单的形式:
if (valenc > intrev32ifbe(is->encoding)) {
return intsetUpgradeAndAdd(is,value);
}
if (intsetSearch(is,value,&pos)) {
if (success) *success = 0;
return is;
} else {
is = intsetResize(is,intrev32ifbe(is->length)+1);
if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1);
_intsetSet(is,pos,value);
is->length = intrev32ifbe(intrev32ifbe(is->length)+1);
return is;
}
*/
}
/* Delete integer from intset
*
* 从整数集合中删除值 value 。
*
* *success 的值指示删除是否成功:
* - 因值不存在而造成删除失败时该值为 0 。
* - 删除成功时该值为 1 。
*
* T = O(N)
*/
intset *intsetRemove(intset *is, int64_t value, int *success) {
// 计算 value 的编码方式
uint8_t valenc = _intsetValueEncoding(value);
uint32_t pos;
// 默认设置标识值为删除失败
if (success) *success = 0;
// 当 value 的编码大小小于或等于集合的当前编码方式(说明 value 有可能存在于集合)
// 并且 intsetSearch 的结果为真,那么执行删除
// T = O(log N)
if (valenc <= intrev32ifbe(is->encoding) && intsetSearch(is,value,&pos)) {
// 取出集合当前的元素数量
uint32_t len = intrev32ifbe(is->length);
/* We know we can delete */
// 设置标识值为删除成功
if (success) *success = 1;
/* Overwrite value with tail and update length */
// 如果 value 不是位于数组的末尾
// 那么需要对原本位于 value 之后的元素进行移动
//
// 举个例子,如果数组表示如下,而 b 为删除的目标
// | a | b | c | d |
// 那么 intsetMoveTail 将 b 之后的所有数据向前移动一个元素的空间,
// 覆盖 b 原来的数据
// | a | c | d | d |
// 之后 intsetResize 缩小内存大小时,
// 数组末尾多出来的一个元素的空间将被移除
// | a | c | d |
if (pos < (len-1)) intsetMoveTail(is,pos+1,pos);
// 缩小数组的大小,移除被删除元素占用的空间
// T = O(N)
is = intsetResize(is,len-1);
// 更新集合的元素数量
is->length = intrev32ifbe(len-1);
}
return is;
}
整数集合的API设计的特别优雅,特别是其中的升级和元素移动的代码,值得好好观摩学习。