前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Numpy 中的 Ndarray

Numpy 中的 Ndarray

作者头像
杨丝儿
发布2022-02-18 15:17:01
1K0
发布2022-02-18 15:17:01
举报
文章被收录于专栏:杨丝儿的小站

numpy概述

  1. Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。
  2. Numpy是其它数据分析及机器学习库的底层库。
  3. Numpy完全标准C语言实现,运行效率充分优化。
  4. Numpy开源免费。

numpy历史

  1. 1995年,Numeric,Python语言数值计算扩充。
  2. 2001年,Scipy->Numarray,多维数组运算。
  3. 2005年,Numeric+Numarray->Numpy。
  4. 2006年,Numpy脱离Scipy成为独立的项目。

numpy的核心:多维数组

  1. 代码简洁:减少Python代码中的循环。
  2. 底层实现:厚内核©+薄接口(Python),保证性能。

ndarray 数组

用np.ndarray类的对象表示n维数组

代码语言:javascript
复制
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary)) # <class 'numpy.ndarray'>

内存中的ndarray对象

元数据(metadata)

存储对目标数组的描述信息,如:ndim、shape、dtype、data等。

实际数据

完整的数组数据

将实际数据与元数据分开存放,一方面提高了内存空间的使用效率,另一方面减少对实际数据的访问频率,提高性能。

数组对象的特点

  1. Numpy数组是同质数组,即所有元素的数据类型必须相同
  2. Numpy数组的下标从0开始,最后一个元素的下标为数组长度减1,同python的列表。

数组对象的创建

np.array(任何可被解释为Numpy数组的逻辑结构)

代码语言:javascript
复制
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
print(a) # [1 2 3 4 5 6]

np.arange(起始值(0),终止值,步长(1))

代码语言:javascript
复制
import numpy as np
a = np.arange(0, 5, 1)
print(a) # [0 1 2 3 4]
b = np.arange(0, 10, 2)
print(b) # [0 2 4 6 8]

np.zeros(数组元素个数, dtype='类型')

代码语言:javascript
复制
import numpy as np
a = np.zeros(10)
print(a) # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

np.ones(数组元素个数, dtype='类型')

代码语言:javascript
复制
import numpy as np
a = np.ones(10)
print(a) # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

对象属性的基本操作

数组的维度np.ndarray.shape

代码语言:javascript
复制
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.shape)
#二维数组
ary = np.array([
    [1,2,3,4],
    [5,6,7,8]
])
print(type(ary), ary, ary.shape) # <class 'numpy.ndarray'> [[1 2 3 4] [5 6 7 8]] (2, 4)

元素的类型:np.ndarray.dtype

代码语言:javascript
复制
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.dtype) # <class 'numpy.ndarray'> [1 2 3 4 5 6] int64
#转换ary元素的类型
b = ary.astype(float)
print(type(b), b, b.dtype) # <class 'numpy.ndarray'> [1. 2. 3. 4. 5. 6.] float64
#转换ary元素的类型
c = ary.astype(str)
print(type(c), c, c.dtype) # <class 'numpy.ndarray'> ['1' '2' '3' '4' '5' '6'] <U21

数组元素的个数:np.ndarray.size

代码语言:javascript
复制
import numpy as np
ary = np.array([
    [1,2,3,4],
    [5,6,7,8]
])
#观察维度,size,len的区别
print(ary.shape, ary.size, len(ary)) # (2, 4) 8 2

数组元素索引(下标)

数组对象[…, 页号, 行号, 列号]

下标从0开始,到数组len-1结束。

代码语言:javascript
复制
import numpy as np
a = np.array([[[1, 2],
               [3, 4]],
              [[5, 6],
               [7, 8]]])
print(a, a.shape)
print(a[0])
print(a[0][0])
print(a[0][0][0])
print(a[0, 0, 0])
for i in range(a.shape[0]):
    for j in range(a.shape[1]):
        for k in range(a.shape[2]):
            print(a[i, j, k])

对象属性操作详解

Numpy的内部基本数据类型

自定义复合类型:list of tuples

代码语言:javascript
复制
# 自定义复合类型
import numpy as np

data=[
	('zs', [90, 80, 85], 15),
	('ls', [92, 81, 83], 16),
	('ww', [95, 85, 95], 15)
]
#第一种设置dtype的方式
a = np.array(data, dtype='U3, 3int32, int32')
print(a)
print(a[0]['f0'], ":", a[1]['f1'])
print("=====================================")
#第二种设置dtype的方式
b = np.array(data, dtype=[('name', 'str_', 2),
                    ('scores', 'int32', 3),
                    ('age', 'int32', 1)])
print(b[0]['name'], ":", b[0]['scores'])
print("=====================================")

#第三种设置dtype的方式
c = np.array(data, dtype={'names': ['name', 'scores', 'ages'],
                    'formats': ['U3', '3int32', 'int32']})
print(c[0]['name'], ":", c[0]['scores'], ":", c.itemsize)
print("=====================================")

#第四种设置dtype的方式  
d = np.array(data, dtype={'name': ('U3', 0),
                    'scores': ('3int32', 16),
                    'age': ('int32', 28)})
print(d[0]['names'], d[0]['scores'], d.itemsize)

print("=====================================")

#测试日期类型数组
f = np.array(['2011', '2012-01-01', '2013-01-01 01:01:01','2011-02-01'])
f = f.astype('M8[D]')
f = f.astype('i4')
print(f[3]-f[0])

f.astype('bool')

类型字符码

数组维度操作

视图变维(数据共享): reshape() 与 ravel()

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 9)
print(a)		# [1 2 3 4 5 6 7 8]
b = a.reshape(2, 4)	#视图变维  : 变为2行4列的二维数组
print(b)
c = b.reshape(2, 2, 2) #视图变维    变为2页2行2列的三维数组
print(c)
d = c.ravel()	#视图变维	变为1维数组
print(d)

复制变维(数据独立):flatten()

代码语言:javascript
复制
e = c.flatten()
print(e)
a += 10
print(a, e, sep='\n')

就地变维:直接改变原数组对象的维度,不返回新数组

代码语言:javascript
复制
a.shape = (2, 4)
print(a)
a.resize(2, 2, 2)
print(a)
数组索引操作
代码语言:javascript
复制
# 数组对象切片的参数设置与列表切面参数类似
#  步长+:默认切从首到尾
#  步长-:默认切从尾到首
数组对象[起始位置:终止位置:步长, ...]
# 默认位置步长:1
代码语言:javascript
复制
import numpy as np
a = np.arange(1, 10)
print(a)  # 1 2 3 4 5 6 7 8 9
print(a[:3])  # 1 2 3
print(a[3:6])   # 4 5 6
print(a[6:])  # 7 8 9
print(a[::-1])  # 9 8 7 6 5 4 3 2 1
print(a[:-4:-1])  # 9 8 7
print(a[-4:-7:-1])  # 6 5 4
print(a[-7::-1])  # 3 2 1
print(a[::])  # 1 2 3 4 5 6 7 8 9
print(a[:])  # 1 2 3 4 5 6 7 8 9
print(a[::3])  # 1 4 7
print(a[1::3])  # 2 5 8
print(a[2::3])  # 3 6 9

多维数组的切片操作

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 28)
a.resize(3,3,3)
print(a)
#切出1页 
print(a[1, :, :])		
#切出所有页的1行
print(a[:, 1, :])		
#切出0页的1行1列
print(a[0, :, 1])		

ndarray数组的掩码操作:之后的要学到的pandas包也经常使用

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 10)
mask = [True, False,True, False,True, False,True, False,True]
print(a[mask])

多维数组的组合与拆分

垂直方向操作:vstack vsplit

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 垂直方向完成组合操作,生成新数组
c = np.vstack((a, b))
# 垂直方向完成拆分操作,生成两个数组
d, e = np.vsplit(c, 2)

水平方向操作:hstack hsplit

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 水平方向完成组合操作,生成新数组 
c = np.hstack((a, b))
# 水平方向完成拆分操作,生成两个数组
d, e = np.hsplit(c, 2)

深度方向操作:dstack dsplit(3 维)

代码语言:javascript
复制
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 深度方向(3维)完成组合操作,生成新数组
i = np.dstack((a, b))
# 深度方向(3维)完成拆分操作,生成两个数组
k, l = np.dsplit(i, 2)

长度不等的数组组合:pad+vstack/hstack/dstack

代码语言:javascript
复制
import numpy as np
a = np.array([1,2,3,4,5])
b = np.array([1,2,3,4])
# 填充b数组使其长度与a相同
b = np.pad(b, pad_width=(0, 1), mode='constant', constant_values=-1)
print(b)
# 垂直方向完成组合操作,生成新数组
c = np.vstack((a, b))
print(c)

多维数组组合与拆分的相关函数:concatenate split

代码语言:javascript
复制
# 通过axis作为关键字参数指定组合的方向,取值如下:
# 若待组合的数组都是二维数组:
#	0: 垂直方向组合
#	1: 水平方向组合
# 若待组合的数组都是三维数组:
#	0: 垂直方向组合
#	1: 水平方向组合
#	2: 深度方向组合
np.concatenate((a, b), axis=0)
# 通过给出的数组与要拆分的份数,按照某个方向进行拆分,axis的取值同上
np.split(c, 2, axis=0)

简单的一维数组组合方案:row_stack colomn_stack

代码语言:javascript
复制
a = np.arange(1,9)		#[1, 2, 3, 4, 5, 6, 7, 8]
b = np.arange(9,17)		#[9,10,11,12,13,14,15,16]
#把两个数组摞在一起成两行
c = np.row_stack((a, b))
print(c)
#把两个数组组合在一起成两列
d = np.column_stack((a, b))
print(d)

注:均分,份数需可整除。

类的其他属性

  • shape - 维度
  • dtype - 元素类型
  • size - 元素数量
  • ndim - 维数,len(shape)
  • itemsize - 元素字节数
  • nbytes - 总字节数 = size x itemsize
  • real - 复数数组的实部数组
  • imag - 复数数组的虚部数组
  • T - 数组对象的转置视图
  • flat - 扁平迭代器
代码语言:javascript
复制
import numpy as np
a = np.array([[1 + 1j, 2 + 4j, 3 + 7j],
              [4 + 2j, 5 + 5j, 6 + 8j],
              [7 + 3j, 8 + 6j, 9 + 9j]])
print(a.shape)
print(a.dtype)
print(a.ndim)
print(a.size)
print(a.itemsize)
print(a.nbytes)
print(a.real, a.imag, sep='\n')
print(a.T)
print([elem for elem in a.flat])
b = a.tolist()
print(b)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-11-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • numpy概述
    • numpy历史
      • numpy的核心:多维数组
      • ndarray 数组
        • 内存中的ndarray对象
          • 数组对象的特点
            • 数组对象的创建
              • 对象属性的基本操作
                • 对象属性操作详解
                  • 数组维度操作
                  • 数组索引操作
                • 多维数组的组合与拆分
                  • 类的其他属性
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档