前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Airflow 2.2.3 容器化安装

Airflow 2.2.3 容器化安装

作者头像
公众号: 云原生生态圈
发布2022-02-16 09:43:47
2.1K0
发布2022-02-16 09:43:47
举报
文章被收录于专栏:云原生生态圈

上文简单的了解了airflow的概念与使用场景,今天就通过Docker安装一下Airflow,在使用中在深入的了解一下airflow有哪些具体的功能。

1Airflow容器化部署

阿里云的宿主机环境:

  • 操作系统: Ubuntu 20.04.3 LTS
  • 内核版本: Linux 5.4.0-91-generic

安装docker

安装Docker可参考官方文档[1],纯净系统,就没必要卸载旧版本了,因为是云上平台,为防止配置搞坏环境,你可以先提前进行快照。

代码语言:javascript
复制
 # 更新repo
 sudo apt-get update
 sudo apt-get install \
    ca-certificates \
    curl \
    gnupg \
    lsb-release
    
# 添加docker gpg key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

# 设置docker stable仓库地址
echo \
  "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \
  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
  
# 查看可安装的docker-ce版本
root@bigdata1:~# apt-cache madison docker-ce
 docker-ce | 5:20.10.12~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages
 docker-ce | 5:20.10.11~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages
 docker-ce | 5:20.10.10~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages
 docker-ce | 5:20.10.9~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages

# 安装命令格式
#sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-cli=<VERSION_STRING> containerd.io
# 安装指定版本
sudo apt-get install docker-ce=5:20.10.12~3-0~ubuntu-focal docker-ce-cli=5:20.10.12~3-0~ubuntu-focal containerd.io
优化Docker配置

/etc/docker/daemon.json

代码语言:javascript
复制
{
    "data-root": "/var/lib/docker",
    "exec-opts": [
        "native.cgroupdriver=systemd"
    ],
    "registry-mirrors": [
        "https://****.mirror.aliyuncs.com" #此处配置一些加速的地址,比如阿里云的等等...
    ],
    "storage-driver": "overlay2",
    "storage-opts": [
        "overlay2.override_kernel_check=true"
    ],
    "log-driver": "json-file",
    "log-opts": {
        "max-size": "100m",
        "max-file": "3"
    }
}

配置开机自己

代码语言:javascript
复制
systemctl daemon-reload
systemctl enable --now docker.service

容器化安装Airflow

数据库选型

根据官网的说明,数据库建议使用MySQL8+和postgresql 9.6+,在官方的docker-compose脚本[2]中使用是PostgreSQL,因此我们需要调整一下docker-compose.yml的内容

代码语言:javascript
复制
---
version: '3'
x-airflow-common:
  &airflow-common
  # In order to add custom dependencies or upgrade provider packages you can use your extended image.
  # Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
  # and uncomment the "build" line below, Then run `docker-compose build` to build the images.
  image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.2.3}
  # build: .
  environment:
    &airflow-common-env
    AIRFLOW__CORE__EXECUTOR: CeleryExecutor
    AIRFLOW__CORE__SQL_ALCHEMY_CONN: mysql+mysqldb://airflow:aaaa@mysql/airflow # 此处替换为mysql连接方式
    AIRFLOW__CELERY__RESULT_BACKEND: db+mysql://airflow:aaaa@mysql/airflow # 此处替换为mysql连接方式
    AIRFLOW__CELERY__BROKER_URL: redis://:xxxx@redis:6379/0 # 为保证安全,我们对redis开启了认证,因此将此处xxxx替换为redis密码
    AIRFLOW__CORE__FERNET_KEY: ''
    AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
    AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
    AIRFLOW__API__AUTH_BACKEND: 'airflow.api.auth.backend.basic_auth'
    _PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
  volumes:
    - ./dags:/opt/airflow/dags
    - ./logs:/opt/airflow/logs
    - ./plugins:/opt/airflow/plugins
  user: "${AIRFLOW_UID:-50000}:0"
  depends_on:
    &airflow-common-depends-on
    redis:
      condition: service_healthy
    mysql: # 此处修改为mysql service名称
      condition: service_healthy

services:
  mysql:
    image: mysql:8.0.27 # 修改为mysql最新版镜像
    environment:
      MYSQL_ROOT_PASSWORD: bbbb # MySQL root账号密码
      MYSQL_USER: airflow
      MYSQL_PASSWORD: aaaa # airflow用户的密码
      MYSQL_DATABASE: airflow
    command:
      --default-authentication-plugin=mysql_native_password # 指定默认的认证插件
      --collation-server=utf8mb4_general_ci # 依据官方指定字符集
      --character-set-server=utf8mb4 # 依据官方指定字符编码
    volumes:
      - /apps/airflow/mysqldata8:/var/lib/mysql # 持久化MySQL数据
      - /apps/airflow/my.cnf:/etc/my.cnf # 持久化MySQL配置文件
    healthcheck:
      test:  mysql --user=$$MYSQL_USER --password=$$MYSQL_PASSWORD -e 'SHOW DATABASES;' # healthcheck command
      interval: 5s
      retries: 5
    restart: always

  redis:
    image: redis:6.2
    expose:
      - 6379
    command: redis-server --requirepass xxxx # redis-server开启密码认证
    healthcheck:
      test: ["CMD", "redis-cli","-a","xxxx","ping"] # redis使用密码进行healthcheck
      interval: 5s
      timeout: 30s
      retries: 50
    restart: always

  airflow-webserver:
    <<: *airflow-common
    command: webserver
    ports:
      - 8080:8080
    healthcheck:
      test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-scheduler:
    <<: *airflow-common
    command: scheduler
    healthcheck:
      test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-worker:
    <<: *airflow-common
    command: celery worker
    healthcheck:
      test:
        - "CMD-SHELL"
        - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
      interval: 10s
      timeout: 10s
      retries: 5
    environment:
      <<: *airflow-common-env
      # Required to handle warm shutdown of the celery workers properly
      # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
      DUMB_INIT_SETSID: "0"
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-triggerer:
    <<: *airflow-common
    command: triggerer
    healthcheck:
      test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-init:
    <<: *airflow-common
    entrypoint: /bin/bash
    # yamllint disable rule:line-length
    command:
      - -c
      - |
        function ver() {
          printf "%04d%04d%04d%04d" $${1//./ }
        }
        airflow_version=$$(gosu airflow airflow version)
        airflow_version_comparable=$$(ver $${airflow_version})
        min_airflow_version=2.2.0
        min_airflow_version_comparable=$$(ver $${min_airflow_version})
        if (( airflow_version_comparable < min_airflow_version_comparable )); then
          echo
          echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
          echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
          echo
          exit 1
        fi
        if [[ -z "${AIRFLOW_UID}" ]]; then
          echo
          echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
          echo "If you are on Linux, you SHOULD follow the instructions below to set "
          echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
          echo "For other operating systems you can get rid of the warning with manually created .env file:"
          echo "    See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
          echo
        fi
        one_meg=1048576
        mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
        cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
        disk_available=$$(df / | tail -1 | awk '{print $$4}')
        warning_resources="false"
        if (( mem_available < 4000 )) ; then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
          echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
          echo
          warning_resources="true"
        fi
        if (( cpus_available < 2 )); then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
          echo "At least 2 CPUs recommended. You have $${cpus_available}"
          echo
          warning_resources="true"
        fi
        if (( disk_available < one_meg * 10 )); then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
          echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
          echo
          warning_resources="true"
        fi
        if [[ $${warning_resources} == "true" ]]; then
          echo
          echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
          echo "Please follow the instructions to increase amount of resources available:"
          echo "   https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
          echo
        fi
        mkdir -p /sources/logs /sources/dags /sources/plugins
        chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
        exec /entrypoint airflow version
    # yamllint enable rule:line-length
    environment:
      <<: *airflow-common-env
      _AIRFLOW_DB_UPGRADE: 'true'
      _AIRFLOW_WWW_USER_CREATE: 'true'
      _AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
      _AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
    user: "0:0"
    volumes:
      - .:/sources

  airflow-cli:
    <<: *airflow-common
    profiles:
      - debug
    environment:
      <<: *airflow-common-env
      CONNECTION_CHECK_MAX_COUNT: "0"
    # Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
    command:
      - bash
      - -c
      - airflow

  flower:
    <<: *airflow-common
    command: celery flower
    ports:
      - 5555:5555
    healthcheck:
      test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

在官方docker-compose.yaml基础上只修改了x-airflow-common,MySQL,Redis相关配置,接下来就应该启动容器了,在启动之前,需要创建几个持久化目录:

代码语言:javascript
复制
mkdir -p ./dags ./logs ./plugins
echo -e "AIRFLOW_UID=$(id -u)" > .env # 注意,此处一定要保证AIRFLOW_UID是普通用户的UID,且保证此用户有创建这些持久化目录的权限

如果不是普通用户,在运行容器的时候,会报错,找不到airflow模块

代码语言:javascript
复制
docker-compose up airflow-init #初始化数据库,以及创建表
docker-compose up -d #创建airflow容器

当出现容器的状态为unhealthy的时候,要通过docker inspect $container_name查看报错的原因,至此airflow的安装就已经完成了。

参考资料

[1] Install Docker Engine on Ubuntu: https://docs.docker.com/engine/install/ubuntu/

[2] 官方docker-compose.yaml: https://airflow.apache.org/docs/apache-airflow/2.2.3/docker-compose.yaml

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 云原生生态圈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1Airflow容器化部署
    • 安装docker
      • 优化Docker配置
    • 容器化安装Airflow
      • 数据库选型
    • 参考资料
    相关产品与服务
    容器镜像服务
    容器镜像服务(Tencent Container Registry,TCR)为您提供安全独享、高性能的容器镜像托管分发服务。您可同时在全球多个地域创建独享实例,以实现容器镜像的就近拉取,降低拉取时间,节约带宽成本。TCR 提供细颗粒度的权限管理及访问控制,保障您的数据安全。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档