前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【实战问题】-- 缓存穿透之布隆过滤器(1)

【实战问题】-- 缓存穿透之布隆过滤器(1)

作者头像
秦怀杂货店
发布2022-02-15 14:56:00
5180
发布2022-02-15 14:56:00
举报
文章被收录于专栏:技术杂货店

Github仓库地址:https://github.com/Damaer/Coding 编程笔记地址:https://damaer.github.io/Coding/ 刷题仓库介绍:刷题仓库:CodeSolution

前面我们【实战问题】-- 缓存穿透,缓存击穿和缓存雪崩的区别以及解决方案 提到,在防止缓存穿透的情况(缓存穿透是指,缓存和数据库都没有的数据,被大量请求,比如订单号不可能为-1,但是用户请求了大量订单号为-1的数据,由于数据不存在,缓存就也不会存在该数据,所有的请求都会直接穿透到数据库。),我们可以考虑使用布隆过滤器,来过滤掉绝对不存于集合中的元素。

布隆过滤器是什么呢?

布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的,它实际上是由一个很长的二进制向量和一系列随机hash映射函数组成(说白了,就是用二进制数组存储数据的特征)。可以使用它来判断一个元素是否存在于集合中,它的优点在于查询效率高,空间小,缺点是存在一定的误差,以及我们想要剔除元素的时候,可能会相互影响。

也就是当一个元素被加入集合的时候,通过多个hash函数,将元素映射到位数组中的k个点,置为1。

为什么需要布隆过滤器?

一般情况下,我们想要判断是否存在某个元素,一开始考虑肯定是使用数组,但是使用数组的情况,查找的时候效率比较慢,要判断一个元素不存在于数组中,需要每次遍历完所有的元素。删除完一个元素后,还得把后面的其他元素往前面移动。

其实可以考虑使用hash表,如果有hash表来存储,将是以下的结构:

但是这种结构,虽然满足了大部分的需求,可能存在两点缺陷:

  • 只有一个hash函数,其实两个元素hash到一块,也就是产生hash冲突的可能性,还是比较高的。虽然可以用拉链法(后面跟着一个链表)的方式解决,但是操作时间复杂度可能有所升高。
  • 存储的时候,我们需要把元素引用给存储进去,要是上亿的数据,我们要将上亿的数据存储到一个hash表里面,不太建议这样操作。

对于上面存在的缺陷,其实我们可以考虑,用多个hash函数来减少冲突(注意:冲突时不可以避免的,只能减少),用位来存储每一个hash值。这样既可以减少hash冲突,还可以减少存储空间。

假设有三个hash函数,那么不同的元素,都会使用三个hash函数,hash到三个位置上。

假设后面又来了一个张三,那么在hash的时候,同样会hash到以下位置,所有位都是1,我们就可以说张三已经存在在里面了。

那么有没有可能出现误判的情况呢?这是有可能的,比如现在只有张三,李四,王五,蔡八,hash映射值如下:

后面来了陈六,但是不凑巧的是,它hash的三个函数hash出来的位,刚刚好就是被别的元素hash之后,改成1了,判断它已经存在了,但是实际上,陈六之前是不存在的。

上面的情况,就是误判,布隆过滤器都会不可避免的出现误判。但是它有一个好处是,布隆过滤器,判断存在的元素,可能不存在,但是判断不存在的元素,一定不存在。,因为判断不存在说明至少有一位hash出来是对不上的。

也是由于会出现多个元素可能hash到一起,但有一个数据被踢出了集合,我们想把它映射的位,置为0,相当于删除该数据。这个时候,就会影响到其他的元素,可能会把别的元素映射的位,置为了0。这也就是为什么布隆过滤器不能删除的原因。

具体步骤

添加元素:

    1. 使用多个hash函数对元素item进行hash运算,得到多个hash值。
    1. 每一个hash值对bit位数组取模,得到位数组中的位置索引index。
    1. 如果index的位置不为1,那么就将该位置为1。

判断元素是否存在:

    1. 使用多个hash函数对元素item进行hash运算,得到多个hash值。
    1. 每一个hash值对bit位数组取模,得到位数组中的位置索引index。
    1. 如果index所处的位置都为1,说明元素可能已经存在了。

误判率推导

庆幸的是,布隆过滤器的误判率是可以预测的,由上面的分析,也可以得知,其实是与位数组的大小,以及hash函数的个数等,这些都是息息相关的。

假设位数组的大小是m,我们一共有k个hash函数,那么每一个hash函数,进行hash的时候,只能hash到m位中的一个位置,所以没有被hash到的概率是:

1-\frac{1}{m}

k个hash函数都hash之后,该位还是没有被hash到1的概率是:

(1-\frac{1}{m})^k

如果我们插入了n个元素,也就是hash了n*k次,该位还是没有被hash成1的概率是:

(1-\frac{1}{m})^{kn}

那该位为1的概率就是:

1-(1-\frac{1}{m})^{kn}

如果需要检测某一个元素是不是在集合中,也就是该元素对应的k个hash元素hash出来的值,都需要设置为1。也就是该元素不存在,但是该元素对应的所有位都被hash成为1的概率是:

{(1-(1-\frac{1}{m})^{kn})}^{k}\approx {(1-e^{-kn/m})}^k

可以大致看出,随着位数组大小m和hash函数个数的增加,其实概率会下降,随着插入的元素n的增加,概率会有所上升。

最后也可以通过自己期待的误判率P和期待添加的个数n,来大致计算出布隆过滤器的位数组的长度:

m=-(\frac{nInP}{(In2)^2})

上面就是误判率的大致计算方式,同时也提示我们,可以根据自己业务的数据量以及误判率,来调整我们的数组的大小。

布隆过滤器的作用

除了我们前面说的过滤爬虫恶意请求,还可以对一些URL进行去重,过滤海量数据里面的重复数据,过滤数据库里面不存在的id等等。

但是,即使有布隆过滤器,我们也不可能完全避免,或者彻底解决缓存穿透这个问题。只是相当于做了优化,将准确率提高。

很多的key-value数据库也会使用布隆过滤器来加快查询效率,因为全部挨个判断一遍,这个效率太低了。

那布隆过滤器一般怎么实践呢?我们使用的方案有哪些?下次详细聊聊。

【作者简介】

秦怀,公众号【秦怀杂货店】作者,技术之路不在一时,山高水长,纵使缓慢,驰而不息。个人写作方向:Java源码解析,JDBC,Mybatis,Spring,redis,分布式,剑指Offer,LeetCode等,认真写好每一篇文章,不喜欢标题党,不喜欢花里胡哨,大多写系列文章,不能保证我写的都完全正确,但是我保证所写的均经过实践或者查找资料。遗漏或者错误之处,还望指正。

平日时间宝贵,只能使用晚上以及周末时间学习写作 - END -

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-03-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 秦怀杂货店 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 布隆过滤器是什么呢?
  • 为什么需要布隆过滤器?
  • 具体步骤
  • 误判率推导
  • 布隆过滤器的作用
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档