Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
结果转换成3进制,结尾有多少个连续的0?
在面试时,曾遇到这样的一道题:
30!结果转换成3进制,结尾有多少个连续的0?
第一次做的话,感觉没有思路,但是换个角度想,转换成3进制,那么十进制中的1~30,哪些因子相乘,才会贡献出三进制结尾的0呢?当然是:3的倍数。
3, 6, 9, 12, 15 ,18, 21, 24, 27, 30
那么,每一个因子贡献了多少个0呢?
贡献了1个0的因子
3 = 3 * 1
6 = 3 * 2
12 = 3 * 4
15 = 3 * 5
21 = 3 * 7
24 = 3 * 8
30 = 3 * 10
30/3+30/9+30/27所代表的,就是最终结果。
这是因为:30/3把所有贡献了0的因子都算了一次,9、18、27已经被算过一次了,但是9和18还有一个因子没有算,27中还有两个因子没有算。
30/9则计算了一次9、18、27,但是27中还有一个因子没有算。
30/27计算了一次27,至此,所有的因子都计算完毕。
在代码中,一定要注意溢出的问题,如下代码(我的第一个代码)就不能通过测试。因为在n很大时,比如Integer.MAX_VALUE,i *= 5溢出了,i一直是小于等于n,所以是死循环!
public static int trailingZeroes2(int n) {
int rt = 0;
for (int i = 5; i <= n; i *= 5) {
rt += n / i;
}
return rt;
}
解决方法,把n定义成long型。注意i也要定义成long型,否则在n很大时,主要是i * 5 > Integer.MAX_VALUE后会出错。
public int trailingZeroes(int n) {
int rt = 0;
long N = n;
for (long i = 5; i <= N; i *= 5) {
rt += N / i;
}
return rt;
}
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。