前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CNN、Transformer、MLP架构的经验性分析

CNN、Transformer、MLP架构的经验性分析

作者头像
BBuf
发布2021-12-27 14:49:29
9150
发布2021-12-27 14:49:29
举报
文章被收录于专栏:GiantPandaCV

【GiantPandaCV导语】

ViT的兴起挑战了CNN的地位,随之而来的是MLP系列方法。三种架构各有特点,为了公平地比较几种架构,本文提出了统一化的框架SPACH来对比,得到了具有一定insight的结论。论文来自微软的A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP

背景

近期Transformer MLP系列模型的出现,增加了CV领域的多样性,MLP-Mixer的出现表明卷积或者注意力都不是模型性能优异的必要条件。不同架构的模型进行比较的过程中,会使用不同的正则化方法、训练技巧等,为了比较的公平性,本文提出了SPACH的统一框架,期望对几种架构进行对比,同时探究他们各自的特点。

这个框架总体来说有两种模式:多阶段和单阶段。每个阶段内部采用的是Mixing Block,而该Mixing Block可以是卷积层、Transformer层以及MLP层。

经过实验发现了以下几个结论:

  • 多阶段框架效果优于单节段框架(通过降采样划分阶段)
  • 局部性建模具有高效性和重要性。
    • 通过使用轻量级深度卷积(depth wise conv),基于卷积的模型就可以取得与Transformer模型类似的性能。
    • 在MLP和Transformer的架构的支路中使用一些局部的建模可以在有效提升性能同时,只增加一点点参数量。
  • MLP在小型模型中具有非常强的性能表现,但是模型容量扩大的时候会出现过拟合问题,过拟合是MLP成功路上的拦路虎。
  • 卷积操作和Transformer操作是互补的,卷积的泛化性能更强,Transformer结构模型容量更大。通过灵活组合两者可以掌控从小到大的所有模型。

统一框架

本文提出一统MLP、Transformer、Convolution的框架:SPACH

下表展示的是各个模块中可选的参数,并提出了三种变体空间。

其中各个模块设计如下:

  • (a)展示的是卷积部分操作,使用的是3x3深度可分离卷积。
  • (b)展示的是Transformer模块,使用了positional embedding(由于目前一些研究使用absolute positional embedding会导致模块模型的平移不变性,因此采用Convolutional Position Encoding(CPE)。
  • (c)展示的是MLP模块,参考了MLP-Mixer的设计,虽然MLP-Mixer中并没有使用Positional Embedding,但是作者发现通过增加轻量级的CPE能够有效提升模型性能。

注:感觉这三种模块的设计注入了很多经验型设计,比如卷积并没有用普通卷积,用深度可分离卷积其实类似MLP中的操作,此外为MLP引入CPE的操作也非常具有技巧性。

三种模块具有不同的属性:

所谓dynamic weight是Transformer中可以根据图片输入的不同动态控制权重,这样的模型的容量相较CNN更高。CNN中也有这样的趋势,dynamic network的出现也是为了实现动态权重。(感谢zzk老师的讲解)Transformer侧重是关系的学习和建模,不完全依赖于数据,CNN侧重模板的匹配和建模,比较依赖于数据。

Transformer

CNN

Dynamic Attention

Multi-scale Features by multi-stage

Global Context Fusion

Shift,scale and distortion invariance

Better Generalization(学习关系,不完全依赖数据)

Local Spatial Modeling

实验

实验设置:

  • 数据集选择ImageNet-1K
  • 输入分辨率224x224
  • 训练设置参看DeiT
  • AdamW优化器训练300个epoch
  • weight decay: 0.05 (T用的weight decay更小)
  • learning rate:0.005 对应 512 batch size(T用的lr更小)

结论1:multi-stage 要比 single-stage性能更好

具体性能如下表所记录,Multi-Stage能够显著超过Single Stage的模型。

可以发现,有一个例外,在xxs尺度下,Transformer进度损失了2.6个百分点,因为多阶段模型恰好只有单阶段模型一半的参数量和Flops。

随着参数量的增加,模型最高精度先后由MLP、Conv、Transformer所主导。

结论2:局部建模非常重要

上表展示了具有局部建模以及去除局部建模的效果,可以发现使用卷积旁路的时候吞吐量略微降低,但是精度有显著提高。

结论3:MLP的细节分析

MLP性能不足主要源自于过拟合问题,可以使用两种机制来缓解这个问题。

  • Multi-Stage的网络机制,可以从以上实验发现,multi-stage能够有效降低过拟合,提高模型性能。
  • 权重共享机制,MLP在模型参数量比较大的情况下容易过拟合,但是如果使用权重共享可以有效缓解过拟合问题。具体共享的方法是对于某个stage的所有Mixing Block均使用相同的MLP进行处理。

结论4:卷积与Transformer具有互补性

作者认为卷积具有的泛化能力更强,而Transformer具有更大的模型容量,如下图所示,在Loss比较大的情况下,整体的准确率是超过了Transformer空间的。

结论5:混合架构的模型

在multi-stage的卷积网络基础上将某些Mixing Block替换为Transformer的Block, 并且处于对他们建模能力的考量,选择在浅层网络使用CNN,深层网络使用Transformer,得到两种模型空间:

SOTA模型比较结果:

整体结论是:

  • Transformer能力要比MLP强,因此不考虑使用MLP作为混合架构
  • 混合Transformer+CNN的架构性能上能够超越单独的CNN架构或者Transformer架构
  • FLOPS与ACC的权衡做的比较出色,能够超越Swin Transformer以及NAS搜索得到的RegNet系列。

最后作者还向读者进行提问:

  • MLP性能欠佳是由于过拟合带来的,能够设计高性能MLP模型防止过拟合呢?
  • 目前的分析证明卷积或者Transformer并不是一家独大,如何用更好的方式融合两种架构?
  • 是否存在MLP,CNN,Transformer之外的更有效的架构呢?

代码

对照下图逐步给出各个Mixing Block:

(a)卷积模块 ,kernel为3的深度可分离卷积

代码语言:javascript
复制
class DWConv(nn.Module):
    def __init__(self, dim, kernel_size=3):
        super(DWConv, self).__init__()
        self.dim = dim
        self.kernel_size = kernel_size

        padding = (kernel_size - 1) // 2
        self.net = nn.Sequential(Reshape2HW(),
                                 nn.Conv2d(dim, dim, kernel_size, 1, padding, groups=dim),
                                 Reshape2N())

    def forward(self, x):
        x = self.net(x)
        return x

(b)Transformer

代码语言:javascript
复制

class SpatialAttention(nn.Module):
    """Spatial Attention"""
    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., **kwargs):
        super(SpatialAttention, self).__init__()
        head_dim = dim // num_heads

        self.num_heads = num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "b n (three heads head_c) -> three b heads n head_c", three=3, heads=self.num_heads)
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1))  # B, head, N, N
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        out = (attn @ v)  # B, head, N, C
        out = rearrange(out, "b heads n head_c -> b n (heads head_c)")

        out = self.proj(out)
        out = self.proj_drop(out)

        return out

(c)MLP模块,分为channel mlp和spatial mlp,与MLP-Mixer保持一致

代码语言:javascript
复制
class ChannelMLP(nn.Module):
    """Channel MLP"""
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., **kwargs):
        super(ChannelMLP, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

        self.hidden_features = hidden_features
        self.out_features = out_features

    def forward(self, x):
        B, N, C = x.shape
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class SpatialAttention(nn.Module):
    """Spatial Attention"""
    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., **kwargs):
        super(SpatialAttention, self).__init__()
        head_dim = dim // num_heads

        self.num_heads = num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "b n (three heads head_c) -> three b heads n head_c", three=3, heads=self.num_heads)
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1))  # B, head, N, N
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        out = (attn @ v)  # B, head, N, C
        out = rearrange(out, "b heads n head_c -> b n (heads head_c)")

        out = self.proj(out)
        out = self.proj_drop(out)

        return out

SPACH骨干网络的构建: MixingBlock

代码语言:javascript
复制
class MixingBlock(nn.Module):
    def __init__(self, dim,
                 spatial_func=None, scaled=True, init_values=1e-4, shared_spatial_func=False,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., cpe=True,
                 num_heads=None, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,  # attn
                 in_features=None, hidden_features=None, drop=0.,  # mlp
                 channel_ratio=2.0
                 ):
        super(MixingBlock, self).__init__()

        spatial_kwargs = dict(act_layer=act_layer,
                              in_features=in_features, hidden_features=hidden_features, drop=drop,  # mlp
                              dim=dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop  # attn
                              )

        self.valid_spatial_func = True

        if spatial_func is not None:
            if shared_spatial_func:
                self.spatial_func = spatial_func
            else:
                self.spatial_func = spatial_func(**spatial_kwargs)
            self.norm1 = norm_layer(dim)
            if scaled:
                self.gamma_1 = nn.Parameter(init_values * torch.ones(1, 1, dim), requires_grad=True)
            else:
                self.gamma_1 = 1.
        else:
            self.valid_spatial_func = False

        self.channel_func = ChannelMLP(in_features=dim, hidden_features=int(dim*channel_ratio), act_layer=act_layer,
                                       drop=drop)

        self.norm2 = norm_layer(dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()


        self.cpe = cpe
        if cpe:
            self.cpe_net = DWConv(dim)


    def forward(self, x):
        in_x = x
        if self.valid_spatial_func:
            x = x + self.drop_path(self.gamma_1 * self.spatial_func(self.norm1(in_x)))
        if self.cpe:
            x = x + self.cpe_net(in_x)

        x = x + self.drop_path(self.channel_func(self.norm2(x)))

        return 

SPACH构建:

代码语言:javascript
复制
class Spach(nn.Module):
    def __init__(self,
                 num_classes=1000,
                 img_size=224,
                 in_chans=3,
                 hidden_dim=384,
                 patch_size=16,
                 net_arch=None,
                 act_layer=nn.GELU,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 stem_type='conv1',
                 scaled=True, init_values=1e-4, drop_path_rate=0., cpe=True, shared_spatial_func=False,  # mixing block
                 num_heads=12, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,  # attn
                 token_ratio=0.5, channel_ratio=2.0, drop_rate=0.,  # mlp
                 downstream=False,
                 **kwargs
                 ):
        super(Spach, self).__init__()
        self.num_classes = num_classes
        self.hidden_dim = hidden_dim
        self.downstream = downstream

        self.stem = STEM_LAYER[stem_type](
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=hidden_dim, downstream=downstream)
        self.norm1 = norm_layer(hidden_dim)

        block_kwargs = dict(dim=hidden_dim, scaled=scaled, init_values=init_values, cpe=cpe,
                            shared_spatial_func=shared_spatial_func, norm_layer=norm_layer, act_layer=act_layer,
                            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop,  # attn
                            in_features=self.stem.num_patches, hidden_features=int(self.stem.num_patches * token_ratio), channel_ratio=channel_ratio, drop=drop_rate)  # mlp

        self.blocks = self.make_blocks(net_arch, block_kwargs, drop_path_rate, shared_spatial_func)
        self.norm2 = norm_layer(hidden_dim)

        if not downstream:
            self.pool = Reduce('b n c -> b c', reduction='mean')
            self.head = nn.Linear(hidden_dim, self.num_classes)

        self.init_weights()

    def make_blocks(self, net_arch, block_kwargs, drop_path, shared_spatial_func):
        if shared_spatial_func:
            assert len(net_arch) == 1, '`shared_spatial_func` only support unitary spatial function'
            assert net_arch[0][0] != 'pass', '`shared_spatial_func` do not support pass'
            spatial_func = SPATIAL_FUNC[net_arch[0][0]](**block_kwargs)
        else:
            spatial_func = None
        blocks = []
        for func_type, depth in net_arch:
            for i in range(depth):
                blocks.append(MixingBlock(spatial_func=spatial_func or SPATIAL_FUNC[func_type], drop_path=drop_path,
                                          **block_kwargs))
        return nn.Sequential(*blocks)

    def init_weights(self):
        for n, m in self.named_modules():
            _init_weights(m, n)

    def forward_features(self, x):
        x = self.stem(x)
        x = reshape2n(x)
        x = self.norm1(x)

        x = self.blocks(x)
        x = self.norm2(x)

        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.pool(x)
        x = self.head(x)
        return x

参考

https://github.com/microsoft/SPACH

https://zhuanlan.zhihu.com/p/411145994

https://arxiv.org/pdf/2108.13002v2.pdf

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 背景
  • 统一框架
  • 实验
  • 代码
  • 参考
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档