前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >如何利用 JuiceFS 的性能工具做文件系统分析和调优

如何利用 JuiceFS 的性能工具做文件系统分析和调优

作者头像
Juicedata
发布2021-12-10 14:19:14
7370
发布2021-12-10 14:19:14
举报
文章被收录于专栏:Juicedata

JuiceFS 是一款面向云原生环境设计的高性能 POSIX 文件系统,在 AGPL v3.0 开源协议下发布。作为一个云上的分布式文件系统,任何存入 JuiceFS 的数据都会按照一定规则拆分成数据块存入对象存储(如 Amazon S3),相对应的元数据则持久化在独立的数据库中。这种结构决定了 JuiceFS 的存储空间可以根据数据量弹性伸缩,可靠地存储大规模的数据,同时支持在多主机之间共享挂载,实现跨云跨地区的数据共享和迁移。

从 v0.13 发布以来, JuiceFS 新增了多项与性能监测和分析相关的功能,从某种程度上说,开发团队希望 JuiceFS 既能提供大规模分布式计算场景下的出色性能,也能广泛地覆盖更多日常的使用场景。

本文我们从单机应用入手,看依赖单机文件系统的应用是否也可以用在 JuiceFS 之上,并分析它们的访问特点进行针对性的调优。

测试环境

接下来的测试我们会在同一台亚马逊云服务器上进行,配置情况如下:

  • 服务器配置:Amazon c5d.xlarge: 4 vCPUs, 8 GiB 内存, 10 Gigabit 网络, 100 GB SSD
  • JuiceFS:使用本地自建的 Redis 作为元数据引擎,对象存储使用与服务器相同区域的 S3。
  • EXT4:直接在本地 SSD 上创建
  • 数据样本:使用 Redis 的源代码作为测试样本

测试项目一:Git

常用的 git 系列命令有 clone、status、add、diff 等,其中 clone 与编译操作类似,都涉及到大量小文件写。这里我们主要测试 status 命令。

分别将代码克隆到本地的 EXT4 和 JuiceFS,然后执行 git status 命令的耗时情况如下:

  • Ext4:0m0.005s
  • JuiceFS:0m0.091s

可见,耗时出现了数量级的差异。如果单从测试环境的样本来说,这样的性能差异微乎其微,用户几乎是察觉不到的。但如果使用规模更大的代码仓库时,二者的性能差距就会逐渐显现。例如,假设两者耗时都乘以 100 倍,本地文件系统需要约 0.5s,尚在可接受范围内;但 JuiceFS 会需要约 9.1s,用户已能感觉到明显的延迟。为搞清楚主要的耗时点,我们可以使用 JuiceFS 客户端提供的 profile 工具:

代码语言:javascript
复制
$ juicefs profile /mnt/jfs

在分析过程中,更实用的方式是先记录日志,再用回放模式

代码语言:javascript
复制
$ cat /mnt/jfs/.accesslog > a.log
# 另一个会话:git status
# Ctrl-C 结束 cat
$ juicefs profile --interval 0 a.log

结果如下:

这里可以清楚地看到有大量的 lookup 请求,我们可以通过调整 FUSE 的挂载参数来延长内核中元数据的缓存时间,比如使用以下参数重新挂载文件系统:

代码语言:javascript
复制
$ juicefs mount -d --entry-cache 300 localhost /mnt/jfs

然后我们再用 profile 工具分析,结果如下:

可以看到,lookup 请求减少了很多,但都转变成了 getattr 请求,因此还需要属性的缓存:

代码语言:javascript
复制
$ juicefs mount -d --entry-cache 300 --attr-cache 300 localhost /mnt/jfs

此时测试发现 status 命令耗时下降到了 0m0.034s,profile 工具结果如下:

可见一开始最耗时的 lookup 已经减少了很多,而 readdir 请求变成新的瓶颈点。我们还可以尝试设置 --dir-entry-cache,但提升可能不太明显。

测试项目二:Make

大型项目的编译时间往往需要以小时计,因此编译时的性能显得更加重要。依然以 Redis 项目为例,测试编译的耗时为:

  • Ext4:0m29.348s
  • JuiceFS:2m47.335s

我们尝试调大元数据缓存参数,整体耗时下降约 10s。通过 profile 工具分析结果如下:

显然这里的数据读写是性能关键,我们可以使用 stats 工具做进一步的分析:

代码语言:javascript
复制
$ juicefs stats /mnt/jfs

其中一段结果如下:

从上图可见 fuse 的 ops 与 meta 接近,但平均 latency 远大于 meta,因此可以判断出主要的瓶颈点在对象存储侧。不难想象,编译前期产生了大量的临时文件,而这些文件又会被编译的后几个阶段读取,以通常对象存储的性能很难直接满足要求。好在 JuiceFS 提供了数据 writeback 模式,可以在本地盘上先建立写缓存,正好适用于编译这种场景:

代码语言:javascript
复制
$ juicefs mount -d --entry-cache 300 --attr-cache 300 --writeback localhost /mnt/jfs

此时编译总耗时下降到 0m38.308s,已经与本地盘非常接近了。后阶段的 stats 工具监控结果如下:

可见,读请求基本全部在 blockcache 命中,而不再需要去访问对象存储;fuse 和 meta 侧的 ops 统计也得到了极大提升,与预期吻合。

总结

本文以本地文件系统更擅长的 Git 仓库管理和 Make 编译任务为切入点,评估这些任务在 JuiceFS 存储上的性能表现,并使用 JuiceFS 自带的 profile 与 stats 工具进行分析,通过调整文件系统挂载参数做针对性的优化。

毫无疑问,本地文件系统与 JuiceFS 等分布式文件系统存在着天然的特征差异,二者面向的应用场景也截然不同。本文选择了两种特殊的应用场景,只是为了在差异鲜明的情境下介绍如何为 JuiceFS 做性能调优,旨在抛砖引玉,希望大家举一反三。如果你有相关的想法或经验,欢迎在 JuiceFS 论坛或用户群分享和讨论。

项目地址: Github (https://github.com/juicedata/juicefs

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/11/25 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 测试环境
  • 测试项目一:Git
  • 测试项目二:Make
  • 总结
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档