前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >在OneFlow实现数据类型自动提升

在OneFlow实现数据类型自动提升

作者头像
BBuf
发布2021-10-20 14:49:57
2990
发布2021-10-20 14:49:57
举报
文章被收录于专栏:GiantPandaCV

问题引入

我们先简单看下在pytorch下的这几段代码,读者可以猜下最后输出的类型是什么:

代码语言:javascript
复制
x_tensor = torch.ones((3, ), dtype=torch.int8)
y1_tensor = torch.tensor(1, dtype=torch.float64)
out1 = torch.mul(x_tensor, y1_tensor)

y2_tensor = torch.tensor(1, dtype=torch.int64)
out2 = torch.mul(x_tensor, y2_tensor)

out3 = torch.mul(x_tensor, 1.0)

out4 = torch.mul(x_tensor, 2^63-1(the max value of int64))

接下来揭晓答案:

代码语言:javascript
复制
out1.dtype: torch.float64
out2.dtype: torch.int8
out3.dtype: torch.float32
out4.dtype: torch.int8

可以观察到同样是multiply运算,有些结果的数据类型被提升到更高的一级,有些并没有被提升,还维持着int8类型。这其实是一种类型提升系统,系统内会自定义一些类型提升的规则,根据输入的数据类型来推导最终结果的数据类型。

Python Array API标准

参考链接:https://data-apis.org/array-api/latest/API_specification/type_promotion.html

在这里我们可以了解到Python Array的类型提升规则

类型提升

从上图可以看到:

  • 不同数据类型的提升遵循这个连接的规则
  • 虚线表示python标量在溢出的时候未定义
  • bool int float之间没有连线,表示这种混合类型的提升未定义

关于第一条,我们可以看int8uint8,两者最终指向了int16,表示两者运算后最终类型提升到了int16

而根据这一个规则,我们可以列出一个类型提升表格(这个表格很重要,后续看Pytorch源码也会用到)

unsigned int系列和signed int系列为例,列出的表格为:

更多类型提升规则表格可参考前面提到的链接

横坐标和纵坐标分别代表输入的数据类型,表格的值代表类型提升后的数据类型,其中:

  • i1 : 8-bit signed integer (i.e., int8 )
  • i2 : 16-bit signed integer (i.e., int16 )
  • i4 : 32-bit signed integer (i.e., int32 )
  • i8 : 64-bit signed integer (i.e., int64 )

同理于unsigned int

Python Array 和 Scalar 的类型提升

上述这些都是array与array之间运算的类型提升规则,而array与scalar(就是单独一个int,float数值)的类型提升规则则不一样。

  • 如果两者同属于一个数据类型系列(比如都是int系列,包含int8, int32, int64),则最终数据类型遵循数组的数据类型
  • 如果两者同不属于一个数据类型系列(比如一个是int32,一个是float),则进行类型提升

我们可以看下简单的两个例子:

代码语言:javascript
复制
x_tensor = torch.ones((3, ), dtype=torch.int16)
out1 = x_tensor + 2 # out.dtype = torch.int16
out2 = x_tensor + 2.0 # out.dtype = torch.float32

需要注意的是,Array与Scalar的行为会和Array与0d Array的行为保持一致。

我们可以再测试前面两个例子,不同之处是我们将scalar改成一个0d Array

代码语言:javascript
复制
x_tensor = torch.ones((3, ), dtype=torch.int16)
y1_tensor = torch.tensor(2)
y2_tensor = torch.tensor(2.0)

out1 = x_tensor + y1_tensor # out.dtype = torch.int16
out2 = x_tensor + y2_tensor # out.dtype = torch.float32

关于与Scalar运算的行为,Pytorch是和Python Array API标准一致的,但是Numpy则不同,他会根据scalar的数据范围做一个合理的类型提升

代码语言:javascript
复制
import numpy as np

x = np.ones((3, 3), dtype=np.int32)
out = x + (2**31-1) # dtype: np.int32
out = x + (2**31) # dtype: np.int64

我个人更倾向于在类型提升中,Scalar是单独一种行为,而Scalar Tensor和Tensor的行为一致

其他情况

除了前面提到的规则,Pytorch还存在以下两种情况:

  1. 要求两个输入的数据类型完全一致,如torch.dot
代码语言:javascript
复制
RuntimeError: dot : expected both vectors to have same dtype, but found Short and Float
  1. 输入存在一个最低数据类型,比如torch.sum,传任意int系列数据类型,最终输出结果均为torch.int64

以上就简单介绍了Pytorch的类型提升规则,还想要更多的例子可以参考官方文档:https://pytorch.org/docs/master/tensor_attributes.html#torch.torch.dtype

Pytorch是怎么做类型提升的?

实际运算的Kernel,输入和输出的数据类型都是相同的模板参数,不存在特化一个输入为int32,输出为float32或其他类型的函数。

因此Pytorch内部会先推断出一个合理的dtype,然后插入一个to这个op,将输入tensor进行类型提升,再进入到Kernel进行实际的运算。下面我们会根据Pytorch的源码进行讲解:

涉及到的代码:https://github.com/pytorch/pytorch/blob/master/c10/core/ScalarType.h

https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Activation.cpp

https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/TensorIterator.cpp

https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TypeProperties.cpp

ScalarType.h

在这个头文件里定义了相关的数据类型,并且定义了一个类型提升的二维矩阵,这样我们就可以输入两个数据类型,根据索引拿到提升后的数据类型。

类型提升矩阵

Activation.cpp

https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Activation.cpp#L24 我们以其中一个激活函数threshold为例子

代码语言:javascript
复制
TORCH_META_FUNC(threshold)(const Tensor& self, const Scalar& threshold, const Scalar& value) {
  const Tensor& result = maybe_get_output();
  build(TensorIteratorConfig()
    ...
    .promote_inputs_to_common_dtype(true)
}

这里调用了一个build函数,函数接受一个TensorIteratorConfig,这个Config类是用于配制各种属性,可以看到这里调用promote_inputs_to_common_dtype并设为true。

TensorIterator.cpp

build函数定义在:

https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/TensorIterator.cpp#L1321

在1340行,build函数内部调用了compute_type函数

代码语言:javascript
复制
...
compute_types(config);
...

而该函数在260行开始,进行一系列类型推导

其中TensorIterator是一个容器类(Numpy里也有一个类似的容器NpyIter),用于存储输出,输入tensor,里面用了多个for循环来推导得到一个common_dtype

并在最后进行条件判断:promote_inputs_to_common_dtype_为true,当前Tensor不是输出Tensor,且输入的dtype不等于推导得到的common_dtype,则做一个类型提升:

代码语言:javascript
复制
      // Promotes inputs by creating temporaries of the correct dtype
      if (config.promote_inputs_to_common_dtype_ && !op.is_output && op.current_dtype != common_dtype_) {
        op.original_tensor = op.tensor;
        op.tensor = c10::MaybeOwned<Tensor>::owned(op.tensor->to(common_dtype_));
        op.current_dtype = common_dtype_;
        op.target_dtype = common_dtype_;
      }

OneFlow的做法

相关PR:https://github.com/Oneflow-Inc/oneflow/pull/6380

OneFlow则将类型提升的逻辑放在c++中functional前端部分,类似的我们设计了一个TensorProcessor类,接口设计如下:

代码语言:javascript
复制
class TensorProcessor final {
 public:
  TensorProcessor()
      : common_dtype_(DType::InvalidDataType()), promote_inputs_to_common_dtype_(false){};
  TensorProcessor& AddInputs(const TensorTuple& init_list);
  TensorProcessor& AddInputs(const TensorTuple& init_list, Symbol<DType> tensor_lowest_dtype);

  Maybe<void> Apply();
  TensorProcessor& PromoteInputsToCommonDtype(bool is_promote);
  Maybe<TensorTuple&> GetInputs() { return tensor_tuple_; };

 private:
  TensorTuple tensor_tuple_;
  Symbol<DType> common_dtype_;
  std::vector<Symbol<DType>> inputs_lowest_dtype_vec_;

  bool promote_inputs_to_common_dtype_;
};

以二元操作Functor基类为例,在实际调用的时候,我们可以这样:

代码语言:javascript
复制
class BinaryFunctor{
 public:
  Maybe<Tensor> operator()(const std::shared_ptr<one::Tensor>& x,
                           const std::shared_ptr<one::Tensor>& y) const {
    TensorProcessor tensor_processor;
    JUST(tensor_processor.PromoteInputsToCommonDtype(true).AddInputs({x, y}).Apply());
    TensorTuple input_tuple = JUST(tensor_processor.GetInputs());
    return OpInterpUtil::Dispatch<Tensor>(*op_, input_tuple);
  ...
  }
  ...
}; 
  • PromoteInputsToCommonDtype 用于设置相关属性
  • AddInputs函数将需要参与类型提升的Tensor添加到容器中
  • Apply函数执行实际的类型提升等逻辑

tensor_processor.cpp还有其他几个函数,这里简单介绍下功能:

  • CheckHasDifferentInputDType 遍历输入Tensor,检查输入Tensor是否有不同的dtype
  • ComputeCommonDType 根据输入dtype推导一个合理的提升过的dtype
  • CastToSameType 给输入Tensor插入一个Cast操作
代码语言:javascript
复制
Maybe<void> CastToSameType(TensorTuple& tensor_tuple, const Symbol<DType>& common_dtype) {
  for (auto& tensor_ptr : tensor_tuple) {
    if (tensor_ptr->dtype() != common_dtype) {
      tensor_ptr = JUST(functional::Cast(tensor_ptr, common_dtype));
    }
  }
  return Maybe<void>::Ok();
}

Apply函数逻辑如下:

代码语言:javascript
复制
Maybe<void> TensorProcessor::Apply() {
  if (promote_inputs_to_common_dtype_) {
    bool has_different_input_dtype = CheckHasDifferentInputDType(tensor_tuple_);
    if (has_different_input_dtype) {
      common_dtype_ = ComputeCommonDType(tensor_tuple_);
      JUST(CastToSameType(tensor_tuple_, common_dtype_));
    }
  } else {
    for (int i = 0; i < tensor_tuple_.size(); ++i) {
      // Cast all the inputs to it's attribute `lowest_dtype` if the input tensor dtype is lower
      // than attribute `lowest_dtype`.
      Symbol<DType> base_dtype = inputs_lowest_dtype_vec_.at(i);
      if (base_dtype->data_type()
          && DType::priority_order[base_dtype->data_type()]
                 > DType::priority_order[tensor_tuple_.at(i)->dtype()->data_type()]) {
        tensor_tuple_.at(i) = JUST(one::functional::Cast(tensor_tuple_.at(i), base_dtype));
      }
    }
  }
  return Maybe<void>::Ok();
}

if内执行的是类型提升,而else内逻辑则是对应前面提到的其他情况中的第二条,将Tensor类型提升到设定好的一个最低数据类型。还是sum算子,我们设定最低数据类型为int64是这么做的:

代码语言:javascript
复制
class ReduceSumFunctor{
public: 
  Maybe<Tensor> operator()(const std::shared_ptr<one::Tensor>& x, const std::vector<int32_t>& axis,
                           const bool& keepdims) const {
    ...
    TensorProcessor tensor_processor;
    JUST(tensor_processor.AddInputs({x}, /*lowest_dtype=*/DType::Int64()).Apply());
    TensorTuple input_tuple = JUST(tensor_processor.GetInputs());
  }
  ...
}; 

总结

类型提升是一个我们不经意间会使用的一个操作,如果没有正确处理输出的数据类型,则可能导致结果溢出,出现错误的结果。看似很简单,但实际调研+推敲细节也搞了两三周,最后感谢同事在我完成这个功能的期间提供的许多帮助!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-10-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 问题引入
  • Python Array API标准
  • Python Array 和 Scalar 的类型提升
  • 其他情况
  • Pytorch是怎么做类型提升的?
    • ScalarType.h
      • Activation.cpp
        • TensorIterator.cpp
        • OneFlow的做法
        • 总结
        相关产品与服务
        容器服务
        腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档