首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >KNN算法分析圆形图案属于三角形还是正方形类别

KNN算法分析圆形图案属于三角形还是正方形类别

原创
作者头像
用户7705674
修改2021-09-24 14:25:19
修改2021-09-24 14:25:19
6960
举报
文章被收录于专栏:css小迷妹css小迷妹

假设现在需要判断下图中的圆形图案属于三角形还是正方形类别,采用KNN算法分析如下:

  • 当K=3时,图中第一个圈包含了三个图形,其中三角形2个,正方形一个,该圆的则分类结果为三角形。
  • 当K=5时,第二个圈中包含了5个图形,三角形2个,正方形3个,则以3:2的投票结果预测圆为正方形类标。设置不同的K值,可能预测得到不同的结果。

简而言之,一个样本与数据集中的k个最相邻样本中的大多数的类别相同。由其思想可以看出,KNN是通过测量不同特征值之间的距离进行分类,而且在决策样本类别时,只参考样本周围k个“邻居”样本的所属类别。因此比较适合处理样本集存在较多重叠的场景,主要用于预测分析、文本分类、降维等处理。

KNN在Sklearn机器学习包中,实现的类是neighbors.KNeighborsClassifier,简称KNN算法。构造方法为:

代码语言:javascript
复制
KNeighborsClassifier(algorithm='ball_tree', 
    leaf_size=30, 
    metric='minkowski',
    metric_params=None, 
    n_jobs=1, 
    n_neighbors=3, 
    p=2, 
    weights='uniform')

KNeighborsClassifier可以设置3种算法:brute、kd_tree、ball_tree,设置K值参数为n_neighbors=3。调用方法如下:

  • from sklearn.neighbors import KNeighborsClassifier
  • knn = KNeighborsClassifier(n_neighbors=3, algorithm=“ball_tree”)

它包括两个步骤:

  • 训练:nbrs.fit(data, target)
  • 预测:pre = clf.predict(data)

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档