前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >动态规划之 KMP 算法详解

动态规划之 KMP 算法详解

作者头像
labuladong
发布2021-09-23 10:19:32
6120
发布2021-09-23 10:19:32
举报
文章被收录于专栏:labuladong的算法专栏

预计阅读时间:15 分钟

KMP 算法(Knuth-Morris-Pratt 算法)是一个著名的字符串匹配算法,效率很高,但是确实有点复杂。

很多读者抱怨 KMP 算法无法理解,这很正常,想到大学教材上关于 KMP 算法的讲解,也不知道有多少未来的 Knuth、Morris、Pratt 被提前劝退了。有一些优秀的同学通过手推 KMP 算法的过程来辅助理解该算法,这是一种办法,不过本文要从逻辑层面帮助读者理解算法的原理。十行代码之间,KMP 灰飞烟灭。

先在开头约定,本文用pat表示模式串,长度为Mtxt表示文本串,长度为N。KMP 算法是在txt中查找子串pat,如果存在,返回这个子串的起始索引,否则返回 -1

为什么我认为 KMP 算法就是个动态规划问题呢,等会有解释。对于动态规划,之前多次强调了要明确dp数组的含义,而且同一个问题可能有不止一种定义dp数组含义的方法,不同的定义会有不同的解法。

读者见过的 KMP 算法应该是,一波诡异的操作处理pat后形成一个一维的数组next,然后根据这个数组经过又一波复杂操作去匹配txt。时间复杂度 O(N),空间复杂度 O(M)。其实它这个next数组就相当于dp数组,其中元素的含义跟pat的前缀和后缀有关,判定规则比较复杂,不太好理解。

本文则用一个二维dp数组(但空间复杂度还是 O(M)),重新定义其中元素的含义,使得代码长度大大减少,可解释性大大提高。

PS:本文的代码参考《算法4》,原代码使用的数组名称是dfa(确定有限状态机),因为我们的公众号之前有一系列动态规划的文章,就不说这么高大上的名词了,本文还是沿用dp数组的名称。

一、KMP 算法概述

首先还是简单介绍一下 KMP 算法和暴力匹配算法的不同在哪里,难点在哪里,和动态规划有啥关系。

暴力的字符串匹配算法很容易写,看一下它的运行逻辑:

代码语言:javascript
复制
// 暴力匹配(伪码)
int search(String pat, String txt) {
    int M = pat.length;
    int N = txt.length;
    for (int i = 0; i <= N - M; i++) {
        int j;
        for (j = 0; j < M; j++) {
            if (pat[j] != txt[i+j])
                break;
        }
        // pat 全都匹配了
        if (j == M) return i;
    }
    // txt 中不存在 pat 子串
    return -1;
}

对于暴力算法,如果出现不匹配字符,同时回退txtpat的指针,嵌套 for 循环,时间复杂度 O(MN),空间复杂度O(1)。最主要的问题是,如果字符串中重复的字符比较多,该算法就显得很蠢。

比如 txt = "aaacaaab" pat = "aaab":

暴力算法

很明显,pat中根本没有字符 c,根本没必要回退指针i,暴力解法明显多做了很多不必要的操作。

KMP 算法的不同之处在于,它会花费空间来记录一些信息,在上述情况中就会显得很聪明:

kmp算法

再比如类似的 txt = "aaaaaaab" pat = "aaab",暴力解法还会和上面那个例子一样蠢蠢地回退指针i,而 KMP 算法又会耍聪明:

kmp算法

因为 KMP 算法知道字符 b 之前的字符 a 都是匹配的,所以每次只需要比较字符 b 是否被匹配就行了。

KMP 算法永不回退txt的指针i,不走回头路(不会重复扫描txt),而是借助dp数组中储存的信息把pat移到正确的位置继续匹配,时间复杂度只需 O(N),用空间换时间,所以我认为它是一种动态规划算法。

KMP 算法的难点在于,如何计算dp数组中的信息?如何根据这些信息正确地移动pat的指针?这个就需要确定有限状态自动机来辅助了,别怕这种高大上的文学词汇,其实和动态规划的dp数组如出一辙,等你学会了也可以拿这个词去吓唬别人。

还有一点需要明确的是:计算这个dp数组,只和pat串有关。意思是说,只要给我个pat,我就能通过这个模式串计算出dp数组,然后你可以给我不同的txt,我都不怕,利用这个dp数组我都能在 O(N) 时间完成字符串匹配。

具体来说,比如上文举的两个例子:

代码语言:javascript
复制
txt1 = "aaacaaab" 
pat = "aaab"
txt2 = "aaaaaaab" 
pat = "aaab"

我们的txt不同,但是pat是一样的,所以 KMP 算法使用的dp数组是同一个。

只不过对于txt1的下面这个即将出现的未匹配情况:

dp数组指示pat这样移动:

PS:这个j不要理解为索引,它的含义更准确地说应该是状态(state),所以它会出现这个奇怪的位置,后文会详述。

而对于txt2的下面这个即将出现的未匹配情况:

dp数组指示pat这样移动:

明白了dp数组只和pat有关,那么我们这样设计 KMP 算法就会比较漂亮:

这样,当我们需要用同一pat去匹配不同txt时,就不需要浪费时间构造dp数组了:

代码语言:javascript
复制
KMP kmp = new KMP("aaab");
int pos1 = kmp.search("aaacaaab"); //4
int pos2 = kmp.search("aaaaaaab"); //4

二、状态机概述

为什么说 KMP 算法和状态机有关呢?是这样的,我们可以认为pat的匹配就是状态的转移。比如当 pat = "ABABC":

如上图,圆圈内的数字就是状态,状态 0 是起始状态,状态 5(pat.length)是终止状态。开始匹配时pat处于起始状态,一旦转移到终止状态,就说明在txt中找到了pat

比如说如果当前处于状态 2,就说明字符 "AB" 被匹配:

另外,处于某个状态时,遇到不同的字符,pat状态转移的行为也不同。比如说假设现在匹配到了状态 4,如果遇到字符 A 就应该转移到状态 3,遇到字符 C 就应该转移到状态 5,如果遇到字符 B 就应该转移到状态 0:

具体什么意思呢,举例解释一下。用变量j表示指向当前状态的指针,当前pat匹配到了状态 4:

如果遇到了字符 "A",根据箭头指示,转移到状态 3 是最聪明的:

如果遇到了字符 "B",根据箭头指示,只能转移到状态 0(一夜回到解放前):

如果遇到了字符 "C",根据箭头指示,应该转移到终止状态 5,这也就意味着匹配完成:

当然了,还可能遇到其他字符,比如 Z,但是显然应该转移到起始状态 0,因为pat中根本都没有字符 Z:

这里为了清晰起见,我们画状态图时就把其他字符转移到状态 0 的箭头省略,只画pat中出现的字符的状态转移:

KMP 算法最关键的步骤就是构造这个状态转移图。要确定状态转移的行为,得明确两个变量,一个是当前的匹配状态,另一个是遇到的字符;确定了这两个变量后,就可以知道这个情况下应该转移到哪个状态。

下面看一下 KMP 算法根据这幅状态转移图匹配字符串txt的过程:

kmp算法运行过程

请记住这个 GIF 的匹配过程,这就是 KMP 算法的核心逻辑

为了描述状态转移图,我们定义一个二维 dp 数组,它的含义如下:

代码语言:javascript
复制
dp[j][c] = next
0 <= j < M,代表当前的状态
0 <= c < 256,代表遇到的字符(ASCII 码)
0 <= next <= M,代表下一个状态

dp[4]['A'] = 3 表示:
当前是状态 4,如果遇到字符 A,
pat 应该转移到状态 3

dp[1]['B'] = 2 表示:
当前是状态 1,如果遇到字符 B,
pat 应该转移到状态 2

根据我们这个 dp 数组的定义和刚才状态转移的过程,我们可以先写出 KMP 算法的 search 函数代码:

代码语言:javascript
复制
public int search(String txt) {
    int M = pat.length();
    int N = txt.length();
    // pat 的初始态为 0
    int j = 0;
    for (int i = 0; i < N; i++) {
        // 当前是状态 j,遇到字符 txt[i],
        // pat 应该转移到哪个状态?
        j = dp[j][txt.charAt(i)];
        // 如果达到终止态,返回匹配开头的索引
        if (j == M) return i - M + 1;
    }
    // 没到达终止态,匹配失败
    return -1;
}

到这里,应该还是很好理解的吧,dp数组就是我们刚才画的那幅状态转移图,如果不清楚的话回去看下 GIF 的算法演进过程。

下面讲解:如何通过pat构建这个dp数组?

三、构建状态转移图

回想刚才说的:要确定状态转移的行为,必须明确两个变量,一个是当前的匹配状态,另一个是遇到的字符,而且我们已经根据这个逻辑确定了dp数组的含义,那么构造dp数组的框架就是这样:

代码语言:javascript
复制
for 0 <= j < M: # 状态
    for 0 <= c < 256: # 字符
        dp[j][c] = next

这个 next 状态应该怎么求呢?显然,如果遇到的字符cpat[j]匹配的话,状态就应该向前推进一个,也就是说next = j + 1,我们不妨称这种情况为状态推进

如果遇到的字符cpat[j]不匹配的话,状态就要回退(或者原地不动),我们不妨称这种情况为状态重启

那么,如何得知在哪个状态重启呢?解答这个问题之前,我们再定义一个名字:影子状态(我编的名字),用变量X表示。所谓影子状态,就是和当前状态具有相同的前缀。比如下面这种情况:

当前状态j = 4,其影子状态为X = 2,它们都有相同的前缀 "AB"。因为状态X和状态j存在相同的前缀,所以当状态j准备进行状态重启的时候(遇到的字符cpat[j]不匹配),可以通过X的状态转移图来获得最近的重启位置

比如说刚才的情况,如果状态j遇到一个字符 "A",应该转移到哪里呢?首先状态 4 只有遇到 "C" 才能推进状态,遇到 "A" 显然只能进行状态重启。状态j会把这个字符委托给状态X处理,也就是dp[j]['A'] = dp[X]['A']

为什么这样可以呢?因为:既然j这边已经确定字符 "A" 无法推进状态,只能回退,而且 KMP 算法就是要尽可能少的回退,以免多余的计算。那么j就可以去问问和自己具有相同前缀的X,如果X遇见 "A" 可以进行「状态推进」,那就转移过去,因为这样回退最少:

当然,如果遇到的字符是 "B",状态X也不能进行「状态推进」,只能回退,j只要跟着X指引的方向回退就行了:

你也许会问,这个X怎么知道遇到字符 "B" 要回退到状态 0 呢?因为X永远跟在j的身后,状态X如何转移,在之前就已经算出来了。动态规划算法不就是利用过去的结果解决现在的问题吗?

PS:对这里不理解的同学建议读读这篇旧文 动态规划设计之最长递增子序列

这样,我们就可以细化一下刚才的框架代码:

代码语言:javascript
复制
int X # 影子状态
for 0 <= j < M:
    for 0 <= c < 256:
        if c == pat[j]:
            # 状态推进
            dp[j][c] = j + 1
        else: 
            # 状态重启
            # 委托 X 计算重启位置
            dp[j][c] = dp[X][c] 

四、代码实现

如果之前的内容你都能理解,恭喜你,现在就剩下一个问题:影子状态X是如何得到的呢?下面先直接看完整代码吧。

代码语言:javascript
复制
public class KMP {
    private int[][] dp;
    private String pat;

    public KMP(String pat) {
        this.pat = pat;
        int M = pat.length();
        // dp[状态][字符] = 下个状态
        dp = new int[M][256];
        // base case
        dp[0][pat.charAt(0)] = 1;
        // 影子状态 X 初始为 0
        int X = 0;
        // 当前状态 j 从 1 开始
        for (int j = 1; j < M; j++) {
            for (int c = 0; c < 256; c++) {
                if (pat.charAt(j) == c) 
                    dp[j][c] = j + 1;
                else 
                    dp[j][c] = dp[X][c];
            }
            // 更新影子状态
            X = dp[X][pat.charAt(j)];
        }
    }

    public int search(String txt) {...}
}

先解释一下这一行代码:

代码语言:javascript
复制
// base case
dp[0][pat.charAt(0)] = 1;

这行代码是 base case,只有遇到 pat[0] 这个字符才能使状态从 0 转移到 1,遇到其它字符的话还是停留在状态 0(Java 默认初始化数组全为 0)。

影子状态X是先初始化为 0,然后随着j的前进而不断更新的。下面看看到底应该如何更新影子状态X

代码语言:javascript
复制
int X = 0;
for (int j = 1; j < M; j++) {
    ...
    // 更新影子状态
    // 当前是状态 X,遇到字符 pat[j],
    // pat 应该转移到哪个状态?
    X = dp[X][pat.charAt(j)];
}

更新X其实和search函数中更新状态j的过程是非常相似的:

代码语言:javascript
复制
int j = 0;
for (int i = 0; i < N; i++) {
    // 当前是状态 j,遇到字符 txt[i],
    // pat 应该转移到哪个状态?
    j = dp[j][txt.charAt(i)];
    ...
}

其中的原理非常微妙,注意代码中 for 循环的变量初始值,可以这样理解:后者是在txt中匹配pat,前者是在pat中匹配pat[1:],状态X总是落后状态j一个状态,与j具有最长的相同前缀。所以我把X比喻为影子状态,似乎也有一点贴切。

另外,构建 dp 数组是根据 base casedp[0][..]向后推演。这就是我认为 KMP 算法就是一种动态规划算法的原因。

下面来看一下状态转移图的完整构造过程,你就能理解状态X作用之精妙了:

状态转移构造过程

至此,KMP 算法就已经再无奥妙可言了!看下 KMP 算法的完整代码吧:

代码语言:javascript
复制
public class KMP {
    private int[][] dp;
    private String pat;

    public KMP(String pat) {
        this.pat = pat;
        int M = pat.length();
        // dp[状态][字符] = 下个状态
        dp = new int[M][256];
        // base case
        dp[0][pat.charAt(0)] = 1;
        // 影子状态 X 初始为 0
        int X = 0;
        // 构建状态转移图(稍改的更紧凑了)
        for (int j = 1; j < M; j++) {
            for (int c = 0; c < 256; c++)
                dp[j][c] = dp[X][c];
            dp[j][pat.charAt(j)] = j + 1;
            // 更新影子状态
            X = dp[X][pat.charAt(j)];
        }
    }

    public int search(String txt) {
        int M = pat.length();
        int N = txt.length();
        // pat 的初始态为 0
        int j = 0;
        for (int i = 0; i < N; i++) {
            // 计算 pat 的下一个状态
            j = dp[j][txt.charAt(i)];
            // 到达终止态,返回结果
            if (j == M) return i - M + 1;
        }
        // 没到达终止态,匹配失败
        return -1;
    }
}

经过之前的详细举例讲解,你应该可以理解这段代码的含义了,当然你也可以把 KMP 算法写成一个函数。核心代码也就是两个函数中 for 循环的部分,数一下有超过十行吗?

五、最后总结

传统的 KMP 算法是使用一个一维数组next记录前缀信息,而本文是使用一个二维数组dp以状态转移的角度解决字符匹配问题,但是空间复杂度仍然是 O(256M) = O(M)。

pat匹配txt的过程中,只要明确了「当前处在哪个状态」和「遇到的字符是什么」这两个问题,就可以确定应该转移到哪个状态(推进或回退)。

对于一个模式串pat,其总共就有 M 个状态,对于 ASCII 字符,总共不会超过 256 种。所以我们就构造一个数组dp[M][256]来包含所有情况,并且明确dp数组的含义:

dp[j][c] = next表示,当前是状态j,遇到了字符c,应该转移到状态next

明确了其含义,就可以很容易写出 search 函数的代码。

对于如何构建这个dp数组,需要一个辅助状态X,它永远比当前状态j落后一个状态,拥有和j最长的相同前缀,我们给它起了个名字叫「影子状态」。

在构建当前状态j的转移方向时,只有字符pat[j]才能使状态推进(dp[j][pat[j]] = j+1);而对于其他字符只能进行状态回退,应该去请教影子状态X应该回退到哪里(dp[j][other] = dp[X][other],其中other是除了pat[j]之外所有字符)。

对于影子状态X,我们把它初始化为 0,并且随着j的前进进行更新,更新的方式和 search 过程更新j的过程非常相似(X = dp[X][pat[j]])。

KMP 算法也就是动态规划的思路,我们的公众号文章目录有动态规划系列,而且都是按照一套框架来的,无非就是描述问题逻辑,明确dp数组含义,定义 base case 这点破事。

希望这篇文章能让大家对动态规划有更深的理解,并摆脱被 KMP 算法支配的恐惧。

我觉得这篇文章值得在看转发一条龙,嘿嘿嘿。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-11-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 labuladong 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 预计阅读时间:15 分钟
    • 一、KMP 算法概述
      • 二、状态机概述
        • 三、构建状态转移图
          • 四、代码实现
            • 五、最后总结
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档