前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >纵向联邦学习场景下的逻辑回归(LR)

纵向联邦学习场景下的逻辑回归(LR)

作者头像
玖柒的小窝
修改于 2021-09-16 06:34:45
修改于 2021-09-16 06:34:45
1.9K0
举报
文章被收录于专栏:各类技术文章~各类技术文章~

一、什么是逻辑回归?

        回归是描述自变量和因变量之间相互依赖关系的统计分析方法。线性回归作为一种常见的回归方法,常用作线性模型(或线性关系)的拟合。

        逻辑回归(logistic regression)虽然也称为回归,却不是一种模型拟合方法,而是一种简单的“二分类”算法。具有实现简单,算法高效等诸多优点。

                               图1.1   二维线性回归                                                    图1.2   三维线性回归

1.1 线性回归(linear regression)

       图1.1、1.2分别表示二维和三维线性回归模型,图1.1的拟合直接(蓝线)可表示为 y=ax+b,所有数据点(红点)到直线的总欧式距离最短,欧式距离常用作计算目标损失函数,进而求解模型;类似的,图1.2的所有数据点到二维平面的总欧式距离最短。所以线性回归模型通常可以表示为:

其中θ表示模型系数。

1.2 逻辑回归(LR)

LR是一种简单的有监督机器学习算法,对输入x,逻辑回归模型可以给出 y<0 or y>0 的概率,进而推断出样本为正样本还是负样本。

        LR引入sigmoid函数来推断样本为正样本的概率,输入样本 x 为正样本的概率可以表示为:P(y|x) = g(y),其中 g() 为sigmoid函数,

曲线图如图1.3所示,输出区间为0~1:

图1.3    sigmoid曲线

对于已知模型 θ 和样本 x,y=1的概率可以表示为:

所以sigmoid尤其适用于二分类问题,当 g(y) > 0.5 时,表示 P(y=1|x) > 0.5,将其判为正样本,对应 y>0 ;反之,当 g(y) < 0.5 时,表示 P(y=1|x) < 0.5,将其判为负样本,对应 y<0。

1.3 LR损失函数

     LR采用对数损失函数,对于训练集x∈S,损失函数可以表示为(参考https://zhuanlan.zhihu.com/p/44591359):

     梯度下降算法是LR模型的经典解法之一,模型迭代更新的表达式如下:

其中

  • l()为目标损失函数,本质为平均对数损失函数。
  • S'为批处理数据集(大小为batchsize),通过批处理方式引入随机扰动,使得模型权重更加快速逼近最优值。
  • α为学习率,直接影响模型的收敛速度,学习率过大会导致loss左右震荡无法达到极值点,学习率太小会导致loss收敛速度过慢,长时间找不到极值点。

二、纵向联邦学习场景下的LR

        关于纵向联邦学习的介绍已经屡见不鲜,市面上也涌现出很多优秀的产品,比如FATE、华为可信智能计算TICS等。纵向联邦可以实现多用户在不暴露己方数据的前提下,共享数据和特征,训练出精度更高的模型,对于金融和政务等众多行业具有重要意义。

图2.1 纵向联邦LR

2.1 LR的纵向联邦实现

         纵向联邦学习的参与方都是抱着共享数据、不暴露己方数据的目的加入到联邦中,所以任何敏感数据都必须经过加密才能出己方信任域(图2.1,参考https://arxiv.org/pdf/1711.10677.pdf),这就引入了同态加密算法。同态加密为密文计算提供了可行性,同时也一定程度上影响了机器学习算法的性能。常见的同态加密库包括seal、paillier等。

         纵向联邦场景下梯度计算公式如下:LR的纵向联邦流程如图2.2所示,host表示只有特征的一方,guest表示包含标签的一方。

图 2.2 纵向联邦LR算法实现流程

  • 在训练开始之前,作业双方需要交换同态公钥。
  • 每轮epoch(迭代)的batch(一轮batchsize的计算为一个batch)循环中,包含calEncryptedU-->calEncryptedGradient-->decryptGradient-->updateLrModel四步,guest和host都需要按此顺序执行一遍(  流程图中只体现了guest作为发起方的执行流程)。
  • A2步骤中梯度加随机噪声的目的是为了防止己方U泄露,造成安全问题。

      由于同态加密计算只支持整数、浮点数的加法和乘法,所以将1.3中的模型迭代公式中的指数部分表示成泰勒表达式形式:

本文系外文翻译,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系外文翻译,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习基础——从线性回归到逻辑回归【硬核推导,附代码】
在之前的文章当中,我们推导了线性回归的公式,线性回归本质是线性函数,模型的原理不难,核心是求解模型参数的过程。通过对线性回归的推导和学习,我们基本上了解了机器学习模型学习的过程,这是机器学习的精髓,要比单个模型的原理重要得多。
TechFlow-承志
2020/03/05
7820
机器学习基础——从线性回归到逻辑回归【硬核推导,附代码】
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
逻辑回归(Logistic Regression)是机器学习中的 一种分类模型 ,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛
小言从不摸鱼
2024/09/10
2660
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
机器学习三人行-Logistic和Softmax回归实战剖析
关注公众号“智能算法”即可一起学习整个系列的文章 本文主要实战Logistic回归和softmax回归在iris数据集上的应用,通过该文章,希望我们能一起掌握该方面的知识。欢迎文末查看下载关键字,公众号回复即可免费下载实战代码。 1. Logistic回归 我们在系列一中提到过,一些回归算法可以用来进行分类,以及一些分类算法可以进行回归预测,Logistic回归就是这样的一种算法。Logistic回归一般通过估计一个概率值,来表示一个样本属于某一类的概率。假如一个样本属于某一类的概率大于50%,那么就判该样
企鹅号小编
2018/01/10
8060
机器学习三人行-Logistic和Softmax回归实战剖析
联邦学习 OR 迁移学习?No,我们需要联邦迁移学习
海量训练数据是现代机器学习算法、人工智能技术在各个领域中应用获得成功的重要条件。例如,计算机视觉和电子商务推荐系统中的 AI 算法都依赖于大规模的标记良好的数据集才能获得较好的处理效果,如 ImageNet 等。然而在一些应用领域中,例如医学领域、经济学领域以及一些政务信息化领域中,海量的可用训练数据往往是非常有限的。存在这些问题的主要原因:一是,针对机器学习算法的数据标注任务需要专业的知识和经验才能完成,这种预处理任务的成本非常高,往往无法获得机器学习所需要的足够的标注数据。二是,各个行业对数据隐私和数据安全的保护越来越强,在一定程度上也限制了对训练数据的共享,也就进一步加剧了可用的标注数据缺乏的问题。
机器之心
2020/11/20
1.2K0
联邦学习 OR 迁移学习?No,我们需要联邦迁移学习
逻辑回归(LR)算法
一、算法介绍 Logistic regression (逻辑回归)是一种非线性回归模型,特征数据可以是连续的,也可以是分类变量和哑变量,是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,主要的用途: 分类问题:如,反垃圾系统判别,通过计算被标注为垃圾邮件的概率和非垃圾邮件的概率判定; 排序问题:如,推荐系统中的排序,根据转换预估值进行排序; 预测问题:如,广告系统中CTR预估,根据CTR预估值预测广告收益; 这个世界是随机的,所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是
智能算法
2018/04/02
7.9K0
逻辑回归(LR)算法
机器学习-对数几率回归(逻辑回归)算法
对数几率回归(Logistic Regression),也称逻辑回归,虽然名字中含有回归,但其实是一种分类算法。找一个单调可微函数将分类任务中的真实标记与线性回归模型的预测值联系起来,是一种广义线性回归。
唔仄lo咚锵
2023/05/23
9610
机器学习-对数几率回归(逻辑回归)算法
深入理解逻辑回归及公式推导
分类和回归是机器学习中两类经典的问题,而逻辑回归虽然叫回归,却是一个用于解决分类问题的算法模型,但确实跟回归有着密切关系——它的分类源于回归拟合的思想。
luanhz
2020/11/19
1.6K0
深入理解逻辑回归及公式推导
从零开始学习线性回归:理论、实践与PyTorch实现
在机器学习中已经使用了sklearn库介绍过逻辑回归,这里重点使用pytorch这个深度学习框架
小馒头学Python
2024/04/21
2690
从零开始学习线性回归:理论、实践与PyTorch实现
【机器学习笔记】:从零开始学会逻辑回归(一)
逻辑回归是一个非常经典,也是很常用的模型。之前和大家分享过它的重要性:5个原因告诉你:为什么在成为数据科学家之前,“逻辑回归”是第一个需要学习的
Python数据科学
2018/12/17
8680
【机器学习笔记】:从零开始学会逻辑回归(一)
突破 逻辑回归 核心点!!
很多人都提到了这一句,逻辑回归,虽然名字里有“回归”,但逻辑回归实际上是用于解决二分类(binary classification)问题的分类算法。它通过一个逻辑函数(sigmoid函数)将线性回归的输出值映射到一个(0, 1)之间的概率值,从而实现分类任务。
Python编程爱好者
2024/07/12
1640
突破 逻辑回归 核心点!!
手撸机器学习算法 - 逻辑回归
今天我们一起来学习使用非常广泛的分类算法:逻辑回归,是的,你没有看错,虽然它名字里有回归,但是它确实是个分类算法,作为除了感知机以外,最最最简单的分类算法,下面我们把它与感知机对比来进行学习;
HoLoong
2021/07/01
5330
机器学习十大经典算法之逻辑回归
,y的取值范围是[-∞, +∞]。因其简单而受到工业界的关注。Y的取值范围过大,一般要把结果进行正则化,限定在[0,1]。所以需要把结果带入非线性变换Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果我们设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类了。
墨明棋妙27
2022/09/23
5650
通俗易懂--逻辑回归算法讲解(算法+案例)
逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个方法。
mantch
2019/07/30
6K0
通俗易懂--逻辑回归算法讲解(算法+案例)
从原理到代码,轻松深入逻辑回归模型!
【导语】学习逻辑回归模型,今天的内容轻松带你从0到100!阿里巴巴达摩院算法专家、阿里巴巴技术发展专家、阿里巴巴数据架构师联合撰写,从技术原理、算法和工程实践3个维度系统展开,既适合零基础读者快速入门,又适合有基础读者理解其核心技术;写作方式上避开了艰涩的数学公式及其推导,深入浅出。
AI科技大本营
2019/08/16
6190
从原理到代码,轻松深入逻辑回归模型!
关于逻辑回归,面试官们都怎么问
「面试官们都怎么问」系列文章主旨是尽可能完整全面地整理ML/DL/NLP相关知识点,不管是刚入门的新手、准备面试的同学或是温故知新的前辈,我们希望都能通过这一系列的文章收获到或多或少的帮助
NewBeeNLP
2020/08/26
8270
图解机器学习 | 逻辑回归算法详解
教程地址:http://www.showmeai.tech/tutorials/34
ShowMeAI
2022/03/10
1K0
图解机器学习 | 逻辑回归算法详解
逻辑回归(LR)算法
一、算法介绍 Logistic regression (逻辑回归)是一种非线性回归模型,特征数据可以是连续的,也可以是分类变量和哑变量,是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,主要的用途: 分类问题:如,反垃圾系统判别,通过计算被标注为垃圾邮件的概率和非垃圾邮件的概率判定; 排序问题:如,推荐系统中的排序,根据转换预估值进行排序; 预测问题:如,广告系统中CTR预估,根据CTR预估值预测广告收益; 这个世界是随机的,所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是
智能算法
2018/04/03
1.2K0
逻辑回归(LR)算法
机器学习 | 逻辑回归算法(一)理论
逻辑回归是线性分类器,其本质是由线性回归通过一定的数学变化而来的。要理解逻辑回归,得先理解线性回归。线性回归是构造一个预测函数来映射输入的特性矩阵和标签的线性关系。线性回归使用最佳的拟合直线(也就是回归线)在因变量(
数据STUDIO
2021/06/24
1.7K0
【机器学习-监督学习】逻辑斯谛回归
  在介绍了机器学习中相关的基本概念和技巧后,本章我们继续讲解参数化模型中的线性模型。有了前文的基础,我们可以先来对KNN算法和线性回归进行比较,进一步回答“什么是参数化模型”这一问题。对于机器学习算法来说,其目标通常可以抽象为得到某个从输入空间到输出空间的映射
Francek Chen
2025/01/22
1980
【机器学习-监督学习】逻辑斯谛回归
机器学习算法(一):逻辑回归模型(Logistic Regression, LR)[通俗易懂]
2.1.1 为什么损失函数不用最小二乘?即逻辑斯蒂回归损失函数为什么使用交叉熵而不是MSE?
全栈程序员站长
2022/09/14
4.2K0
机器学习算法(一):逻辑回归模型(Logistic Regression, LR)[通俗易懂]
推荐阅读
相关推荐
机器学习基础——从线性回归到逻辑回归【硬核推导,附代码】
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档