前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >视锥裁剪模拟器

视锥裁剪模拟器

作者头像
Jean
发布于 2021-09-07 03:21:29
发布于 2021-09-07 03:21:29
813014
代码可运行
举报
文章被收录于专栏:Web行业观察Web行业观察
运行总次数:14
代码可运行

我们知道,视锥体裁剪(near clip)是整个渲染流水线前期组的任务,视锥体内部的物体都被cpu剔除掉,我们用虚幻的材质来模拟一下,利用蒙版(masked)材质实现部分剔除,单纯图一乐呵,没什么实用性,首先是最简单的视锥球的剔除:

很简单,就是摄像机为球心,球内的像素全隐藏掉,clip阈值可以设置成有意义的大小(单位cm),相机靠近物体时,效果如下:

注意这时截面的边缘是弧形的。但好像没人用视锥球,都是视锥体(四棱锥),裁剪面是一个平面(近截面),所以我们模拟一下:

比近截球稍微复杂一点,我们需要得到与相机的方向向量垂直,并且经过当前像素的平面,即相机与像素距离到方向向量的投影,自然而然地想到了向量点积的几何意义,于是得到上面的算法,效果如下:

注意这时截面边缘是平的。同样要把裁剪的阈值设置成合理值,比如300。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-08-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 WebHub 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
视锥体——初等几何解析
视锥体是当前3D行业最重要的透视模型,想要理解视锥,首先要区分透视和正交的区别。
Jean
2021/03/16
2K0
视锥体——初等几何解析
你的登录界面不够花里胡哨,3D 版本的来了
今天分享一篇用three.js 做的登录网站,里面还用到了粒子特效,一个字就是酷炫😎 前言: 该篇文章用到的主要技术:vue3、three.js 我们先看看成品效果: 登录gif 图 座机小图预览: login2.gif 废话不多说,直接进入正题 Three.js的基础知识 想象一下,在一个虚拟的3D世界中都需要什么?「首先,要有一个立体的空间,其次是有光源,最重要的是要有一双眼睛」。下面我们就看看在three.js中如何创建一个3D世界吧! 创建一个场景 设置光源 创建相机,设置相机位置和相
程序员小猿
2021/11/23
1.1K0
【笔记】《计算机图形学》(13)——更多光线追踪
本章是前面第四章光线追踪内容的扩展内容,内容比较少,字数4.4k,补充了一些实现光线追踪中常用的更进一步的技术,包括对透明物体的渲染,实例化技术在光线追踪中的应用,如何在光线追踪中渲染构造实体几何(CSG)和利用分布式光线追踪可以达到的很多华丽的效果。
ZifengHuang
2021/02/04
2.1K0
多视图立体匹配MVSNet网络解析:保姆级教程
论文题目:MVSNet: Depth Inference for Unstructured Multi-view Stereo, (ECCV2018 Oral)
计算机视觉
2021/04/30
3.4K0
多视图立体匹配MVSNet网络解析:保姆级教程
Shader经验分享
流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa
bering
2019/12/03
2.2K0
硬核干货丨游戏大世界的超远视距处理手法,建议收藏!
| 导语   本文从浮点数精度、实时阴影、合批策略和剔除算法四方面阐述游戏大世界的超远视距处理的常用手法。 当世界足够大的时候,浮点数的精度问题就会呈现出来。浮点数的精度可能带来的问题可谓五花八门,如模型之间出现接缝和穿插、光照计算出现溢出变黑、骨骼动画出现抖动等。如果你在半精度Shader开发中没碰到过这类问题,那不是你的算法太优秀,就是你还没被现实所教育。 位置和计算精度问题 一般来说,在CPU端,游戏中的数学库大多是基于32位浮点数构建,常用的如向量运算、矩阵运算、开方求幂、三角函数、BVH划
腾讯大讲堂
2020/10/21
2.8K0
Unreal学习笔记2-绘制简单三角形
之所以写这个绘制简单三角形的实例其实是想知道如何在Unreal中通过代码绘制自定义Mesh,如果你会绘制一个三角形,那么自然就会绘制复杂的Mesh了。所以这是很多图形工作者的第一课。
charlee44
2023/03/07
1K0
Unreal学习笔记2-绘制简单三角形
opengl投影矩阵变换_opengl 坐标
A computer monitor is a 2D surface. A 3D scene rendered by OpenGL must be projected onto the computer screen as a 2D image. GL_PROJECTION matrix is used for this projection transformation. First, it transforms all vertex data from the eye coordinates to the clip coordinates. Then, these clip coordinates are also transformed to the normalized device coordinates (NDC) by dividing with w component of the clip coordinates.
全栈程序员站长
2022/11/04
1.9K0
opengl投影矩阵变换_opengl 坐标
第5章-着色基础-5.2-光源
光照对我们示例着色模型的影响非常简单;它为着色提供了一个主导方向。当然,现实世界中的照明可能非常复杂。可以有多个光源,每个光源都有自己的大小、形状、颜色和强度;间接照明甚至增加了更多的变化。正如我们将在第9章中看到的,基于物理的、写实的着色模型需要考虑所有这些参数。
charlee44
2022/01/04
1.2K0
第5章-着色基础-5.2-光源
[OpenGL]OpenGL坐标系及坐标转换
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ouyangshima/article/details/25135009
用户1148525
2019/06/11
4.5K0
【愚公系列】2023年08月 Three.js专题-相机
相机是一种用来记录图像或视频的设备。现代相机通常由镜头、图像传感器、取景器、快门和图像处理器等部件组成。相机可以拍摄各种类型的照片,包括家庭照片、肖像照片、风景照片、动物照片和艺术照片等。现在,许多相机还具有额外的功能,例如视频录制、自动对焦和无线连接等。随着技术的发展,相机变得更加便携和高质量,已成为记录和分享生活的重要工具。
愚公搬代码
2025/05/28
910
【愚公系列】2023年08月 Three.js专题-相机
【笔记】《计算机图形学》(8)——图形管线
这系列的笔记来自著名的图形学虎书《Fundamentals of Computer Graphics》,这里我为了保证与最新的技术接轨看的是英文第五版,而没有选择第二版的中文翻译版本。不过在记笔记时多少也会参考一下中文版本
ZifengHuang
2020/08/25
2.8K0
【笔记】《计算机图形学》(8)——图形管线
unity3d:Shader知识点,矩阵,函数,坐标转换,Tags,半透明,阴影,深度,亮度,优化
这些代码不需要包含在任何Pass语义块中,在使用时,我们只需要在Pass中直接指定需要使用的顶点着色器和片元着色器函数名即可。CGINCLUDE类似于C++中头文件的功能。由于高斯模糊需要定义两个Pass,但它们使用的片元着色器代码是完全相同的,使用CGINCLUDE可以避免我们编写两个完全一样的frag函数。
立羽
2024/07/08
8050
unity3d:Shader知识点,矩阵,函数,坐标转换,Tags,半透明,阴影,深度,亮度,优化
Direct3D 11 Tutorial 4: 3D Spaces_Direct3D 11 教程4:3D空间
在上一个教程中,我们在应用程序窗口的中心成功渲染了一个三角形。 我们没有太注意我们在顶点缓冲区中拾取的顶点位置。 在本教程中,我们将深入研究3D位置和转换的细节。
Zoctopus
2018/10/11
1.1K0
Direct3D 11 Tutorial 4: 3D Spaces_Direct3D 11 教程4:3D空间
3D 可视化入门:渲染管线原理与实践
玩 3D 游戏的时候,有没有想过这些 3D 物体是怎么渲染出来的?其中的动画是怎么做的?为什么会出现穿模、阴影不对、镜子照不出主角的情况?要想解答这些问题,就要了解实时渲染。其中最基础的,就是渲染管线。
Tecvan
2021/12/09
7.2K1
3D 可视化入门:渲染管线原理与实践
模板阴影理论概述
阴影以前只是一个变暗的纹理,通常是圆形的形状,它被投射到游戏中的字符或对象之下的地板上。一个人必须不知情或天真地认为,我们仍然可以在未来的3D游戏中摆脱这种粗暴的“黑客”。曾经是一个时间,阴影太贵了,无法实时渲染,但随着图形硬件的不断增加的力量,未能提供适当的阴影不再意味着平庸的实现,它接受犯罪罪未充分利用可用的图形硬件。
全栈程序员站长
2022/09/05
1.3K0
2.1 几何阶段第 2 章 GPU 图形绘制管线
图形绘制管线描述 GPU 渲染流程,即“给定视点、三维物体、光源、照明模式,和纹理等元素,如何绘制一幅二维图像”。本章内容涉及 GPU 的基本流程和实时绘制技术的根本原理,在这些知识点之上才能延伸发展出基于 GPU 的各项技术,所以本章的重要性怎么说都不为过。欲登高而穷目,勿筑台于浮沙!
代码咖啡
2018/08/28
1.5K0
2.1 几何阶段第 2 章 GPU 图形绘制管线
Unity通用渲染管线(URP)系列(四)——方向阴影(Cascaded Shadow Maps)
当进行物体渲染时,表面和灯光信息足以计算光照。但是在两者之间可能存在某些阻碍光线的东西,导致在我们需要渲染的表面上投射了阴影。为了使阴影能够正常表现,就必须以某种方式让着色器知道阴影对象。这有很多种方法可以实现, 最常见的方法是生成一个阴影贴图,该贴图存储光在击中表面之前离开其源的距离。任何在同一个方向上更远的距离都不能被同一个光源照亮。Unity的RP使用这种方法,我们也会这样做。
放牛的星星
2020/12/24
7.2K2
Unity3d场景快速烘焙【2020】
很多刚刚接触Unity3d的童鞋花了大量的时间自学,可总是把握不好Unity3d的烘焙,刚从一个坑里爬出来,又陷入另一个新的坑,每次烘焙一个场景少则几个小时,多则几十个小时,机器总是处于假死机状态,半天看不到结果,好不容易烘焙完了,黑斑、撕裂、硬边、漏光或漏阴影等缺陷遍布,惨不忍睹,整体效果暗无层次,或者苍白无力,灯光该亮的亮不起来,该暗的暗不下去,更谈不上有什么意境,痛苦的折磨,近乎失去了信心,一个团队从建模到程序,都没什么问题,可一到烘焙这一关,就堵得心塞,怎么也搞不出好的视觉效果,作品没法及时向用户交付,小姐姐在这里分享一些自己的经验,希望能帮到受此痛苦折磨的朋友,话不多说,开工!
全栈程序员站长
2022/07/01
4.5K0
Unity3d场景快速烘焙【2020】
浅谈 GPU图形固定渲染管线
图形渲染管道被认为是实时图形渲染的核心,简称为管道。管道的主要功能是由给定的虚拟摄像机、三维物体、灯源、光照模型、纹理贴图或其他来产生或渲染一个二维图像。由此可见,渲染管线是实时渲染技术的底层工具。图像中物体的位置及形状是通过它们的几何描述、环境特征、以及该环境中虚拟摄像机的摆放位置来决定的。物体的外观受到了材质属性、灯源、贴图以及渲染模式(sharding modles)的影响。
Tencent JCoder
2018/07/19
2.7K0
推荐阅读
相关推荐
视锥体——初等几何解析
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验