前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >双塔模型中的负采样

双塔模型中的负采样

作者头像
炼丹笔记
发布2021-09-02 10:24:04
1.7K0
发布2021-09-02 10:24:04
举报
文章被收录于专栏:炼丹笔记

作者:十方

推荐模型中双塔模型早已经普及.一个塔学用户表达.一个塔学item表达.很多双塔模型用各种各样的in-batch负采样策略.十方也是如此.往往使用比较大的batchsize,效果会比较好,但是由于内存限制,训练效率会比较低.这篇论文《Cross-Batch Negative Sampling for Training Two-Tower Recommenders》发现encoder的输出在warming up的训练过程后就比较稳定了,基于此提出一个高效负采样的方法Cross Batch Negative Sampling (CBNS),该方法充分使用了最近编码过的item embedding来加速训练过程.

CBNS

关于问题定义就不赘述了,双塔已经写了很多了,计算用户与item相似度也是用简单的点积。loss最典型的就是用sampled softmax:

提升训练效率,最好使的就是batch内负采样了,如下图(a)所示。

参考sampled softmax机制,论文修改上述公式为:

其中q(I)为采样偏差。接下来就要说到cross-batch negative sampling,这个方法可以解决in-batch负采样中,存在batch size受到gpu显存大小,从而影响模型效果。在训练过程中,我们往往认为过去训练过的mini-batches是无用废弃的,论文中则认为这些信息可以反复利用在当前负采样中因为encoder逐渐趋于稳定。论文中用下式评估item encoder特征的偏移:

如上图(b)所示,在早期学习率较大的时候,encoder编码相同item的变化是很大的,随着训练过程的推进,学习率逐渐降低,特征逐渐趋向于稳定,如下图所示

这时候我们可以充分利用稳定的embedding作为负样本。但是用历史的embedding会给梯度带来偏差,论文有证明这个偏差影响是很小的:

考虑到训练前期embedding波动较大,在warm up过程中先使用简单的in-batch内负采样,然后使用一个FIFO memory bank,存放M个历史item embedding

q(I)表示第i个item的采样概率。CBNS的softmax如下式所示:

在每次迭代结束,都会把当前mini-batch的embedding和采样概率加入memory bank.在下次训练过程中,除了使用batch内负样本,同时也会从memory bank中拉取负样本.

实验

对比不同采样策略下的表现:

以及在不同模型下验证集的召回和NDCG曲线:

同时论文还对比了M大小/负样本数对效果的影响:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-08-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 炼丹笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
批量计算
批量计算(BatchCompute,Batch)是为有大数据计算业务的企业、科研单位等提供高性价比且易用的计算服务。批量计算 Batch 可以根据用户提供的批处理规模,智能地管理作业和调动其所需的最佳资源。有了 Batch 的帮助,您可以将精力集中在如何分析和处理数据结果上。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档