Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >总结 27 类深度学习主要神经网络:结构图及应用

总结 27 类深度学习主要神经网络:结构图及应用

作者头像
3D视觉工坊
发布于 2021-08-25 08:14:21
发布于 2021-08-25 08:14:21
4.3K0
举报

导读

目前深度学习中的神经网络种类繁多,用途各异。由于这个分支在指数增长,跟踪神经网络的不同拓扑有助于更深刻的理解。本文将展示神经网络中最常用的拓扑结构,并简要介绍其应用。

图1: 感知器: 大脑中信息存储和组织的概率模型[3] | 来源: 康奈尔航空实验室的Frank Rosenblat标记的感知器。纽约水牛城,1960

1. 感知器(Perceptron(P))

感知器模型也称为单层神经网络。这个神经网络只包含两层:

  • 输入层
  • 输出层

这种类型的神经网络没有隐藏层。它接受输入并计算每个节点的加权。然后,它使用激活函数(大多数是Sigmoid函数)进行分类。 应用:

  • 分类
  • 编码数据库(多层感知器)
  • 监控访问数据(多层感知器)

2. 前馈(Feed Forward (FF))

前馈神经网络是一种其中的节点不会形成循环的人工神经网络。在这种神经网络中,所有的感知器都被安排在输入层接收输入,输出层产生输出。隐藏层与外部世界没有联系,这就是为什么它们被称为隐藏层。在前馈神经网络中,一层的每个感知器与下一层的每个节点连接。因此,所有节点都是完全连接的。需要注意的是,同一层中的节点之间没有可见或不可见的连接。在前馈网络中没有后回路。因此,为了使预测误差最小化,我们通常使用反向传播算法来更新权值。 应用:

  • 数据压缩
  • 模式识别
  • 计算机视觉
  • 声纳目标识别
  • 语音识别
  • 手写字符识别

3. 径向基网络(Radial Basis Network (RBN))

径向基函数网络通常用于解决函数逼近问题。区别于其它神经网络,它们有更快的学习速度和通用逼近能力。径向基神经网络和前馈神经网络的主要区别在于,径向基神经网络使用径向基函数作为激活函数。Logistic(sigmoid)函数的输出值在0到1之间,用来判断答案是是或否。问题是,如果我们有连续的值,则用不了前馈神经网络。径向基神经网络确定生成的输出和目标输出距离多大。在连续值的情况下非常有用。总之,径向基神经网络使用其它的激活函数表现就和前馈神经网络一样。

应用:

  • 函数逼近
  • 时间序列预测
  • 分类
  • 系统控制

4. 深度前馈(Deep Feed-forward (DFF))

深层前馈网络是使用多个隐藏层的前馈网络。只用一层隐藏层的主要问题是过拟合,因此通过增加隐藏层,可以减少过拟合,提高泛化能力。

应用:

  • 数据压缩
  • 模式识别
  • 计算机视觉
  • 心电图噪声滤波
  • 金融预测

5. 循环神经网络(Recurrent Neural Network (RNN))

循环神经网络是前馈神经网络的一种改进形式。在这种类型中,隐藏层中的每个神经元接收具有特定时间延迟的输入。使用这种类型的神经网络,我们需要在当前的迭代中访问之前的信息。例如,当我们试图预测一个句子中的下一个单词时,我们首先需要知道之前使用的单词。循环神经网络可以处理输入并跨时共享任意长度和权重。模型大小不会随着输入的大小而增加,模型中的计算会考虑到历史信息。然而,这种神经网络的问题是计算速度慢。此外,它不能考虑当前状态的任何未来输入。它也无法记住很久以前的信息。

应用:

  • 机器翻译
  • 机器人控制
  • 时间序列预测
  • 语音识别
  • 语音合成
  • 时间序列异常检测
  • 节奏学习
  • 音乐创作

6. 长/短期记忆(Long / Short Term Memory (LSTM))

LSTM 网络引入了一个记忆单元。他们可以处理间隔记忆的数据。如上可见,我们可以在RNN中考虑时间延迟,但如果我们有大量的相关数据,RNN很容易失败,而LSTMs 正好适合。另外,与 LSTMs 相比,RNN不能记忆很久以前的数据。

应用:

  • 语音识别
  • 写作识别

7. 门控循环单位(Gated Recurrent Unit (GRU))

GRU是LSTM的一个变种,因为它们都有相似的设计,绝大多数时候结果一样好。GRU只有三个门,并且它们不维持内部单元状态。

a. 更新门(Update Gate): 决定有多少过去的知识可以传递给未来。 b. 重置门(Reset Gate): 决定过去的知识有多少需要遗忘。 c. 当前记忆门(Current Memory Gate): 重置命运的子部分。 应用:

8. 自动编码器(Auto Encoder (AE)) :

自动编码器神经网络是一个非监督式机器学习算法。在自动编码器中,隐藏神经元的数量小于输入神经元的数量。自动编码器中输入神经元的数目等于输出神经元的数目。在自动编码器网络中,我们训练它来显示输出,输出和输入尽可能接近,这迫使自动编码器找到共同的模式和归纳数据。我们使用自动编码器来更小的表示输入。我们还可以从压缩的数据中重建原始数据。该算法相对简单,因为自动编码器要求输出与输入相同。

  • 编码器: 转换输入数据到低维
  • 解码器: 重构压缩数据

应用:

  • 分类
  • 聚类
  • 特征压缩

9. 变分自动编码器(Variational Autoencoder (VAE))

变分自动编码器(VAE)使用一种概率方法来描述观测。它显示了一个特征集中每个属性的概率分布。 应用:

  • 在句子之间插入
  • 图像自动生成

10. 去噪自动编码器(Denoising Autoencoder (DAE)

在这种自动编码器中,网络不能简单地将输入复制到其输出,因为输入也包含随机噪声。在 DAE 上,我们制造它是为了降低噪声并在其中产生有意义的数据。在这种情况下,该算法迫使隐藏层学习更鲁棒的特征,以便输出是噪声输入的更精确版本。

应用:

  • 特征提取
  • 降维

11. 稀疏自动编码器(Sparse Autoencoder (SAE))

在稀疏自动编码器网络中,我们通过惩罚隐藏层的激活来构造我们的损失函数,这样当我们将一个样本输入网络时,只有少数节点被激活。这种方法背后的直觉是,例如,如果一个人声称自己是A、 B、 C 和 D 学科的专家,那么这个人可能在这些科目上更多的是一个通才。然而,如果这个人只是声称自己专注于学科D,那么大概率预期可以从这个人的学科 D 的知识中得到启发。

应用:

  • 特征提取
  • 手写数字识别

12. 马尔可夫链(Markov Chain (MC))

马尔可夫链是一个基于某些概率规则经历从一种状态到另一种状态转换的数学系统。过渡到任何特定状态的概率完全取决于当前状态和经过的时间。 例如,一些可能的状态可以是:

  • 信件
  • 数字
  • 天气情况
  • 棒球比分
  • 股票表现

应用:

  • 语音识别
  • 信息及通讯系统
  • 排队论
  • 统计学

13. 霍菲特网络(Hopfield Network (HN)):

在 Hopfield 神经网络中,每个神经元都与其它神经元直接相连。在这个网络中,神经元要么是开的,要么是关的。神经元的状态可以通过接受其它神经元的输入而改变。我们通常使用 Hopfield 网络来存储模式和记忆。当我们在一组模式上训练一个神经网络,它就能够识别这个模式,即使它有点扭曲或不完整。当我们提供不完整的输入时,它可以识别完整的模式,这将返回最佳的猜测。

应用:

  • 优化问题
  • 图像检测与识别
  • 医学图像识别
  • 增强 X 射线图像

14. 波茨曼机(Boltzmann Machine (BM)):

波茨曼机网络包括从一个原始数据集中学习一个概率分布,并使用它来推断没见过的数据。在 BM 中,有输入节点和隐藏节点,一旦所有隐藏节点的状态发生改变,输入节点就会转换为输出节点。例如: 假设我们在核电站工作,安全必须是第一位的。我们的工作是确保动力装置中的所有组件都可以安全使用——每个组件都会有相关的状态,使用布尔值1表示可用,0表示不可用。然而,还有一些组成部分,我们不可能定期测量它们的状态。 此外,没有数据可以告诉我们,如果隐藏的部件停止工作,发电厂什么时候会爆炸。在这种情况下,我们构建了一个模型,当组件更改其状态时,它会发出通知。这样,我们将得到通知检查该组件,并确保动力装置的安全。

应用:

  • 降维
  • 分类
  • 回归
  • 协同过滤
  • 特征学习

15. 受限玻尔兹曼机(Restricted Boltzmann Machine (RBM))

RBM 是 BM 的一种变种。在这个模型中,输入层和隐藏层的神经元之间可能有对称的连接。需要注意的一点是,每一层内部都没有内部连接。相比之下,玻尔兹曼机可能有内部连接的隐藏层。这些限制让模型的训练更高效。

应用:

  • 过滤
  • 特征学习
  • 分类
  • 风险检测
  • 商业及经济分析

16. 深度信念网络(Deep Belief Network (DBN))

深度信念网络包含许多隐藏层。我们可以使用无监督算法调用 DBN,因为它首先学习而不需要任何监督。DBN 中的层起着特征检测器的作用。经过无监督训练后,我们可以用监督方法训练我们的模型进行分类。我们可以将 DBN 表示为受限玻耳兹曼机(RBM)和自动编码器(AE)的组合,最后的 DBN 使用概率方法得到结果。 应用:

  • 检索文件/图像
  • 非线性降维

17. 深度卷积网络(Deep Convolutional Network (DCN))

卷积神经网络是一种神经网络,主要用于图像分类、图像聚类和目标识别。DNN 允许无监督地构造层次图像表示。DNN 被用来添加更复杂的特征,以便它能够更准确地执行任务。

应用:

  • 识别面部,街道标志,肿瘤
  • 图像识别
  • 视频分析
  • 自然语言处理
  • 异常检测
  • 药物发现
  • 跳棋游戏
  • 时间序列预测

18. 反卷积神经网络(Deconvolutional Neural Networks (DN))

反卷积网络是一种反向过程的卷积神经网络。尽管反卷积网络在执行方式上类似于 CNN,但它在 AI 中的应用是非常不同的。反卷积网络有助于在以前认为有用的网络中找到丢失的特征或信号。卷积网络可能由于与其它信号卷积而丢失信号。反卷积网络可以接受一个向量输入并还原成照片。 应用:

  • 图像超分辨率
  • 图像的表面深度估计
  • 光流估计

19. 深度卷积逆图形网络(Deep Convolutional Inverse Graphics Network (DC-IGN))

深度卷积逆图形网络旨在将图形表示与图像联系起来。它使用元素,如照明,对象的位置,纹理,和其它方面的图像设计来进行非常复杂的图像处理。它使用不同的层来处理输入和输出。深度卷积逆图形网络利用初始层通过各种卷积和最大池化进行编码,然后利用后续层进行展开解码。 应用:

  • 人脸处理

20. 生成对抗网络(Generative Adversarial Network (GAN))

给定训练数据,GANs 学习用与训练数据相同的统计数据生成新的数据。例如,如果我们对 GAN 模型进行照片训练,那么一个经过训练的模型就能够生成人眼看起来真实可信的新照片。GAN的目标是区分真实结果和合成结果,以便产生更真实的结果。

应用:

  • 创造新的人体姿势
  • 照片变Emoji
  • 面部老化
  • 超分辨率
  • 服装变换
  • 视频预测

21. 液态机(Liquid State Machine (LSM))

液态机是一种特殊的脉冲神经网络。液态机由大量的神经元组成。这里,每个节点接收来自外部源和其它节点的输入,这些输入可能随时间而变化。请注意,液态机上的节点是随机连接的。在液态机中,激活函数替换为阈值级别。只有当液态机达到阈值水平时,一个特定的神经元才会发出输出。

应用:

  • 语音识别
  • 计算机视觉

22. 极限学习机(Extreme Learning Machine (ELM)):

传统系统处理大量数据的主要缺点是:

  • 基于梯度算法学习速度慢
  • 迭代调优所有参数

极限学习机随机选择隐藏节点,然后通过分析确定输出权重。因此,这些算法比一般的神经网络算法更快。另外,在极限学习机网络中,随机分配的权重通常不会更新。它只需一步就能学会输出权重。 应用:

  • 分类
  • 回归
  • 聚类
  • 稀疏逼近
  • 特征学习

23. 回声状态网络(Echo State Network (ESN))

ESN是循环神经网络的一个子类型。这里每个输入节点接收到一个非线性信号。在 ESN 中,隐藏的节点是稀疏连接的。隐节点的连通度和权值是随机分配的。在ESN上,最终的输出权重是可训练更新的。

应用:

  • 时间序列预测
  • 数据挖掘

24. 深度残差网络(Deep Residual Network (DRN))

具有多层结构的深层神经网络训练很难,且需要花费大量的时间。它也可能导致结果退化。深度残差网络即使有很多层也可以防止结果退化。使用残差网络,其输入的一些部分会传递到下一层。因此,这些网络可以相当深(它可能包含大约300层)。

应用:

  • 图像分类
  • 目标检测
  • 语义分割
  • 语音识别
  • 语言识别

25. Kohonen网络(Kohonen Networks (KN) )

Kohonen 网络是一种无监督算法。Kohonen 网络也称为自组织映射,当我们的数据分散在多个维度,而我们希望它只有一个或两个维度时,这非常有用。它可以认为是一种降维的方法。我们使用 Kohonen 网络可视化高维数据。他们使用竞争学习而不是纠错学习。 各种拓扑结构:

  • 矩形网格拓扑
  • 六边形网格拓扑

应用:

  • 降维
  • 水质评价与预测
  • 沿岸水资源管理

26. 支持向量机(Support Vector Machines (SVM)):

支持向量机神经网络是支持向量机和神经网络的混合算法。对于一组新的样本,它总是试图分为两类: 是或否(1或0)。支持向量机通常用于二分类。这些通常不被认为是神经网络。

应用:

  • 人脸检测
  • 文本分类
  • 分类
  • 生物信息学
  • 手写识别

27. 神经图灵机(Neural Turing Machine (NTM)) :

神经图灵机结构包含两个主要组件:

  • 神经网络控制器
  • 记忆库

在这个神经网络中,控制器通过输入和输出向量与外界进行交互。它还通过与记忆矩阵交互来执行选择性读写操作。图灵机被认为在计算上等同于现代计算机。因此,NTM通过与外部存储的交互,扩展了标准神经网络的能力。 应用:

  • 机器人
  • 制造人造大脑

希望你喜欢这篇关于神经网络主要类型的概述。如果你有任何反馈,或者有什么需要修改或重新审视的地方,欢迎在评论中补充。

References:

[1] Activation Function | Wikipedia | en.wikipedia.org/wiki/A

[2] The perceptron: a probabilistic model for information storage and organization in the brain | Frank Rosenblatt | University of Pennsylvania | ling.upenn.edu/courses/

[3] Frank Rosenblat’s Mark I Perceptron at the Cornell Aeronautical Laboratory. Buffalo, Newyork, 1960 | Instagram, Machine Learning Department at Carnegie Mellon University | instagram.com/p/Bn_s3bj

[4] Backpropagation | Wikipedia | https://en.wikipedia.org/wiki/Backpropagation

原文:https://medium.com/towards-artificial-intelligence/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-08-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 3D视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
史上最全!27种神经网络简明图解:模型那么多,我该怎么选?
大数据文摘作品 编译:田奥leo、桑桑、璐、Aileen 27种?!神经网络竟有那么多种?这篇文章将逐一介绍下面这张图片中的27种神经网络类型,并尝试解释如何使用它们。准备好了吗?让我们开始吧! 神经网络的种类越来越多,可以说是在呈指数级地增长。我们需要一个一目了然的图表,在这些新出现的网络构架和方法之间进行导航。 幸运的是,来自Asimov研究所的Fjodor van Veen编写了一个关于神经网络的精彩图表(就是上面那张大图)。 下面,我们就来逐一看看图中的27种神经网络: Perceptron 感知
大数据文摘
2018/05/24
2.9K0
11种主要神经网络结构图解
随着深度学习的快速发展,人们创建了一整套神经网络结构来解决各种各样的任务和问题。尽管有无数的神经网络结构,这里有十一种对于任何深度学习工程师来说都应该理解的结构,可以分为四大类: 标准网络、循环网络、卷积网络和自动编码器。
McGL
2020/09/02
7.5K0
【深度学习】详细的神经网络架构图
将这些架构绘制成节点图的一个问题:它并没有真正展示这些架构的工作方式。比如说,变自编码器(VAE)可能看起来和自编码器(AE)一样,但其训练过程却相当不同。训练好的网络的使用案例之间的差别甚至更大,因为 VAE 是生成器(generator),你可以在其中插入噪声来得到新样本;而 AE 只是简单地将它们的输入映射到其所「记得」的最接近的训练样本。所以必须强调:这篇概览中的不同节点结构并不能反映出这些架构的内在工作方式。 列出一份完整的列表实际上是不可能的,因为新架构一直在不断出现。即使已经发表了,我们
机器人网
2018/04/12
1.5K0
【深度学习】详细的神经网络架构图
十大深度学习算法的原理解析
深度学习是机器学习的子集,它基于人工神经网络。学习过程之所以是深度性的,是因为人工神经网络的结构由多个输入、输出和隐藏层构成。每个层包含的单元可将输入数据转换为信息,供下一层用于特定的预测任务。得益于这种结构,机器可以通过自身的数据处理进行学习。
算法进阶
2023/08/28
7740
十大深度学习算法的原理解析
【中秋赏阅】美丽的神经网络:13种细胞构筑的深度学习世界
【新智元导读】人是视觉动物,因此要了解神经网络,没有什么比用图将它们的形象画出来更加简单易懂了。本文囊括 26 种架构,虽然不都是神经网络,但却覆盖了几乎所有常用的模型。直观地看到这些架构有助于你更好地了解它们的数学含义。当然,本文收录的神经网络并不完全,并且也并不都是神经网络。但它将成为你系统掌握神经网络的好文章。 新的神经网络架构随时随地都在出现,要时刻保持最新还有点难度。要把所有这些缩略语指代的网络(DCIGN,IiLSTM,DCGAN,知道吗?)都弄清,一开始估计还无从下手。 因此,我决定弄一个“作
新智元
2018/03/23
8030
博客 | 一文看懂深度学习发展史和常见26个模型
本文首先从4个方面(张量、生成模型、序列学习、深度强化学习)追踪深度学习几十年的发展史,然后再介绍主流的26个深度学习模型。
AI研习社
2019/05/13
5360
博客 | 一文看懂深度学习发展史和常见26个模型
一文看懂深度学习发展史和常见26个模型
作者简介:沧笙踏歌,硕士毕业于北京大学,目前计算机科学与技术博士在读,主要研究自然语言处理和对话系统,擅长使用深度学习和强化学习解决自然语言处理问题。读博前在公司带过NLP算法团队。
AI科技大本营
2019/05/06
9360
一文看懂深度学习发展史和常见26个模型
上手!深度学习最常见的26个模型练习项目汇总
今天更新关于常见深度学习模型适合练手的项目。这些项目大部分是我之前整理的,基本上都看过,大概俩特点:代码不长,一般50-200行代码,建议先看懂然后再实现和优化,我看基本上所有的实现都有明显可优化的地方;五脏俱全,虽然代码不长,但是该有的功能都有,该包含的部分也基本都有。所以很适合练手,而且实现后还可保存好,以后很多任务可能就会用到。
AI科技大本营
2019/05/17
1.6K0
上手!深度学习最常见的26个模型练习项目汇总
多图 | 从神经元到CNN、RNN、GAN…神经网络看本文绝对够了
作者 | FJODOR VAN VEEN 编译 | AI100(ID:rgznai100) 在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。 因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在的关系开始逐渐清晰起来
AI科技大本营
2018/04/27
3K0
多图 | 从神经元到CNN、RNN、GAN…神经网络看本文绝对够了
机器学习常用神经网络架构和原理
一、为什么需要机器学习? 有些任务直接编码较为复杂,我们不能处理所有的细微之处和简单编码,因此,机器学习很有必要。相反,我们向机器学习算法提供大量数据,让算法不断探索数据并构建模型来解决问题。比如:在新的杂乱照明场景内,从新的角度识别三维物体;编写一个计算信用卡交易诈骗概率的程序。 机器学习方法如下:它没有为每个特定的任务编写相应的程序,而是收集大量事例,为给定输入指定正确输出。算法利用这些事例产生程序。该程序与手写程序不同,可能包含数百万的数据量,也适用于新事例以及训练过的数据。若数据改变,程序在新数据上
两只橙
2018/04/27
1.4K0
机器学习常用神经网络架构和原理
干货 | 史上最好记的神经网络结构速记表(下)
翻译 / 唐青 校对 / 李宇琛 整理 / 雷锋字幕组 本文提供了神经网络结构速查表,全面盘点神经网络的大量框架,并绘制直观示意图进行说明,是人手必备的神经网络学习小抄。昨天,我们发布了 史上最好记的神经网络结构速记表(上) ,今天继续来看其余的14种神经网络结构。 新的神经网络结构不断涌现,我们很难一一掌握。哪怕一开始只是记住所有的简称( DCIGN,BiLSTM,DCGAN ),也会让同学们吃不消。 所以我决定写篇文章归纳归纳,各种神经网络结构。它们大部分都是神经网络,也有一些是完全不同的结构。虽然所
AI科技评论
2018/03/14
1.1K0
干货 | 史上最好记的神经网络结构速记表(下)
神经网络简史
追根溯源,神经网络诞生于人类对于人脑和智能的追问。而这个追问经历了旷远蒙昧的精神至上学说,直到 19 世纪 20 年代。
用户9624935
2022/04/02
1.5K0
神经网络简史
干货 | 史上最好记的神经网络结构速记表(上)
本文提供了神经网络结构速查表,盘点了神经网络的大量框架,并绘制了直观示意图进行说明,是人手必备的神经网络学习小抄。 新的神经网络结构不断涌现,我们很难一一掌握。哪怕一开始只是记住所有的简称( DCIG
AI科技评论
2018/03/14
1.4K0
干货 | 史上最好记的神经网络结构速记表(上)
【干货】这8种神经网络结构,你掌握了几个?
【导读】近日,James Le撰写了一篇博文,全面阐述了神经网络中经典的八种神经网络结构。包括感知器、卷积神经网络、循环神经网络、LSTM、Hopfield网络、玻尔兹曼机网络、深度信念网络、深度自编
WZEARW
2018/04/12
2.1K0
【干货】这8种神经网络结构,你掌握了几个?
最值得关注的10大深度学习算法
下图展示了传统机器学习算法与深度学习技术在数据量方面的性能比较。从图表中可以明显看出,随着数据量的增加,深度学习算法的性能也随之提升。
皮大大
2024/07/19
3930
你不得不了解的8种神经网络结构!
机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以下方面应用: 模式识别:实际场景中的目标、包括人脸、表情、语音识别等等; 异常检测:例如信用卡交易的异常检测、传感器异常数据模式检测和异常行为检测等; 预测问题:预测股票或者汇率、或者预测消费者喜欢的电影、音乐等。 神经网络是一类机器学习算法和模型的统称,也是目前机器学习发展最快的一个领域。神经网络的架构主要分为三大类——前馈、循环和对称链接网络。神经网络具有如下三个特征使它成为了机器学习中
朱晓霞
2018/04/18
8120
你不得不了解的8种神经网络结构!
深度学习算法地图
本文是机器学习算法地图的下篇,系统地整理了深度学习算法,整张图的设计风格与机器学习算法地图保持一致。从去年底就开始酝酿深度学习算法地图,然而工程浩大。这张图是SIGAI算法工程师集体智慧的结晶,也是在研发SIGAI核心产品-简单易用的机器学习框架过程中的副产品。由于深度学习的算法变种太多,而且处于高速发展期,因此难免会有疏漏,后续版本将不断完善与优化。
SIGAI学习与实践平台
2019/05/17
1.9K0
史上最好记的神经网络结构速记表(下)
翻译 / 唐青 校对 / 李宇琛 整理 / 雷锋字幕组 本文提供了神经网络结构速查表,全面盘点神经网络的大量框架,并绘制直观示意图进行说明,是人手必备的神经网络学习小抄。昨天,我们发布了 史上最好记的神经网络结构速记表(上) ,今天继续来看其余的14种神经网络结构。 新的神经网络结构不断涌现,我们很难一一掌握。哪怕一开始只是记住所有的简称( DCIGN,BiLSTM,DCGAN ),也会让同学们吃不消。 所以我决定写篇文章归纳归纳,各种神经网络结构。它们大部分都是神经网络,也有一些是完全不同的结构。虽然所有
AI研习社
2018/03/19
1.1K0
史上最好记的神经网络结构速记表(下)
【学术】在机器学习中经常使用的6种人工神经网络
人工神经网络是是类似于人类神经系统功能的计算模型。有几种人工神经网络是基于数学运算和确定输出所需的一组参数来实现的。让我们来看看吧: 1.前馈神经网络-人工神经元 这个神经网络是人工神经网络最简单的形
AiTechYun
2018/03/06
9650
【学术】在机器学习中经常使用的6种人工神经网络
入门 | 机器学习研究者必知的八个神经网络架构
选自Medium 作者:James Le 机器之心编译 参与:白悦、黄小天 本文简述了机器学习核心结构的历史发展,并总结了研究者需要熟知的 8 个神经网络架构。 我们为什么需要「机器学习」? 机器学习对于那些我们直接编程太过复杂的任务来说是必需的。有些任务很复杂,以至于人类不可能解决任务中所有的细节并精确地编程。所以,我们向机器学习算法提供大量的数据,让算法通过探索数据并找到一个可以实现程序员目的的模型来解决这个问题。 我们来看两个例子: 写一个程序去识别复杂场景中照明条件下新视角的三维物体是很困难的。我们
机器之心
2018/05/10
7670
推荐阅读
相关推荐
史上最全!27种神经网络简明图解:模型那么多,我该怎么选?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档