首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >华人打造二次元老婆生成器!尔康容嬷嬷成萌妹,图像视频都能变 | Demo可玩

华人打造二次元老婆生成器!尔康容嬷嬷成萌妹,图像视频都能变 | Demo可玩

作者头像
量子位
发布于 2021-07-19 07:12:27
发布于 2021-07-19 07:12:27
5730
举报
文章被收录于专栏:量子位量子位
杨净 发自 凹非寺 量子位 报道 | 公众号 QbitAI

当你的女朋友变身二次元,是什么样子?

小声说:没有女朋友。

搞错了,再来!

你下一个二次元老婆,可能是真人生成的!

即便是容嬷嬷本嬷,也能瞬间变温婉~

还有辣个清秀的尔康,也瞬间变身短发萌妹。

只需一张照片、甚至视频就可以生成二次元老婆。

不管是萝莉风、御姐风、甚至女王风,统统都可以!

对此有网友评论道:我的生活完整了。

如何实现?

这样一个生成器,叫做GANs N’ Roses,以下就简称GNR。

嗯?跟Guns N’ Roses (枪炮玫瑰)有什么关系。

按照论文标题所言,要比以往的图像转换技术更稳健、更可控,以及更多样。

GNR,由一个编码器和解码器组成。

编码器将图像分解为内容代码c和风格代码s,解码器接收一个内容码和一个样式码,产生相应的图像。

运行时,把图像传给编码器,保留产生的内容代码,获得一些其他相关的风格代码,然后把这对代码传给解码器。

那具体什么才是内容、以及风格?GNR的关键思路,是将内容定义为事物的位置,风格定义为为它们的样子。

就像这样。即使是同一种风格,也有不同的演绎。

对于一个特定的风格码,包括眼睛、下巴、鼻子、头发颜色等细节,都有很强的一致性。

但就像头部倾斜度、脸部形状、发型等细节,则是由内容码控制的。

损失函数总共有三类:风格一致性损失、循环一致性损失、多样性判别器和对抗损失。

与其他SOTA框架对比,GNR在多样性、图像质量等多个指标上都有明显的改进。

直接放图来比较,则更为明显。

最后,研究人员发现,在没有额外训练的情况下,GNR对于视频之间的转换也同样适合。

目前,GNR已经在GitHub开源,并上线了Demo试玩链接。

我试了试,似乎目前只有一种风格。

但依然挡不住网友直呼:So cool!

团队成员

团队成员均来自美国伊利诺伊大学厄巴纳-香槟分校。

一作华人Min Jin Chong,本科从美国伊利诺伊大学毕业后,继续留校读博,此前曾在字节实习3个月。

另一位作者、他的导师David Forsyth是知名CV大牛,曾与Jean Ponce 合著的《Computer Vision:A Modern Approach》,堪称计算机视觉经典教材。

好了,感兴趣的旁友,可戳下方链接哦~

试玩链接: https://gradio.app/g/AK391/GANsNRoses 论文链接: https://arxiv.org/abs/2106.06561 参考链接: [1]https://twitter.com/ak92501/status/1404614429023539201 [2]https://github.com/mchong6/GANsNRoses

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-06-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档