【GiantPandaCV导语】现在深度学习项目代码量越来越大,并且单个文件的量也非常的大。笔者总结了一些专家的经验并结合自己看的一些项目,打算总结一下如何探索和深入一个深度学习项目库。
首先,需要保证有一定的深度学习基础知识,吴恩达的深度学习课还有斯坦福大学的CS231n都是不错的入门教程,只需要有大学数学的基础就可以看懂。
然后,需要对Linux系统使用有一定的了解,一般选择Ubuntu系统作为主力系统,了解一下基础的系统命令就可以了,比如rm,ls,cd,cat,vim,sudo,find,df,top等,在B站上搜索一下Linux的视频,很快就可以入门。之后遇到新的命令只需要查询API即可。
其次,还需要保证对python语言和深度学习框架的了解,python上手是很快的,可以看一下菜鸟教程或者莫烦python教程,上首页很快。深度学习框架方面可以买一些书籍,边看边敲,找一个小项目敲一敲,了解一下大部分API就已经达到上手水平了。深度学习框架一般选tensorflow、pytorch,因为大部分项目大多是基于这两个框架的。他们官方网站的教程也是非常不错的参考,可以看看官方提供的教程,跑一下github上提供的demo。
最后,营造科研的环境,可以关注一些领域相关的大牛、公众号,也可以加入一些交流群,多和群友交流,尽可能提升领域的常识。不要乱问问题,一定要有自己的思考和想法,然后再到群里问问题和交流。
从Github上拿到一个项目,可以按照以下的步骤进行分析和阅读。
.
├── build.sh # 环境构建
├── eval_ofa_net.py
├── eval_specialized_net.py # 验证专用网络
├── figures
│ ├── cnn_imagenet_new.png
│ ├── diverse_hardware.png
│ ├── imagenet_80_acc.png
│ ├── ofa-tutorial.jpg
│ ├── overview.png
│ └── video_figure.png
├── LICENSE
├── ofa
│ ├── imagenet_classification
│ │ ├── data_providers # 数据加载
│ │ ├── elastic_nn # 算法核心模块
│ │ ├── __init__.py
│ │ ├── networks # 网络构建
│ │ └── run_manager # 训练代码核心逻辑
│ ├── __init__.py
│ ├── model_zoo.py # 模型库
│ ├── nas # nas相关工具
│ │ ├── accuracy_predictor
│ │ ├── efficiency_predictor
│ │ ├── __init__.py
│ │ └── search_algorithm
│ ├── tutorial # 教程
│ │ ├── accuracy_predictor.py
│ │ ├── evolution_finder.py
│ │ ├── flops_table.py
│ │ ├── imagenet_eval_helper.py
│ │ ├── __init__.py
│ │ └── latency_table.py
│ └── utils # 工具库
│ ├── common_tools.py
│ ├── flops_counter.py
│ ├── __init__.py
│ ├── layers.py
│ ├── my_dataloader
│ ├── my_modules.py
│ ├── pytorch_modules.py
│ └── pytorch_utils.py
├── README.md # 项目介绍,初次接触需要阅读
├── requirements.txt # 环境文件
├── setup.py # pip构建环境所需文件
├── train_ofa_net.py # 训练脚本
└── tutorial # 教程
├── local_lut.npy
├── ofa.ipynb
├── ofa_resnet50_example.ipynb
└── README.md
https://www.zhihu.com/question/26480537
https://www.zhihu.com/question/29416073/answer/44301979
https://github.com/phodal/articles/issues/14
本文分享自 GiantPandaCV 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!