前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >并发下载

并发下载

作者头像
用户8442333
修改2021-05-21 10:13:04
修改2021-05-21 10:13:04
3860
举报
文章被收录于专栏:python知识python知识

多线程和多进程回顾

在前面的《进程和线程》一文中,我们已经对在Python中使用多进程和多线程实现并发编程进行了简明的讲解,在此我们补充几个知识点。

threading.local类

使用线程时最不愿意遇到的情况就是多个线程竞争资源,在这种情况下为了保证资源状态的正确性,我们可能需要对资源进行加锁保护的处理,这一方面会导致程序失去并发性,另外如果多个线程竞争多个资源时,还有可能因为加锁方式的不当导致死锁。要解决多个线程竞争资源的问题,其中一个方案就是让每个线程都持有资源的副本(拷贝),这样每个线程可以操作自己所持有的资源,从而规避对资源的竞争。

要实现将资源和持有资源的线程进行绑定的操作,最简单的做法就是使用threading模块的local类,在网络爬虫开发中,就可以使用local类为每个线程绑定一个MySQL数据库连接或Redis客户端对象,这样通过线程可以直接获得这些资源,既解决了资源竞争的问题,又避免了在函数和方法调用时传递这些资源。具体的请参考本章多线程爬取“手机搜狐网”(Redis版)的实例代码。

concurrent.futures模块

Python3.2带来了concurrent.futures 模块,这个模块包含了线程池和进程池、管理并行编程任务、处理非确定性的执行流程、进程/线程同步等功能。关于这部分的内容推荐大家阅读《Python并行编程》

分布式进程

使用多进程的时候,可以将进程部署在多个主机节点上,Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程部署到多个节点上。当然,要部署分布式进程,首先需要一个服务进程作为调度者,进程之间通过网络进行通信来实现对进程的控制和调度,由于managers模块已经对这些做出了很好的封装,因此在无需了解网络通信细节的前提下,就可以编写分布式多进程应用。具体的请参照本章分布式多进程爬取“手机搜狐网”的实例代码。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 多线程和多进程回顾
    • threading.local类
    • concurrent.futures模块
    • 分布式进程
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档