Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >为什么业务分析师要学 PowerBI DAX - 历史演化篇

为什么业务分析师要学 PowerBI DAX - 历史演化篇

作者头像
BI佐罗
发布于 2021-03-10 07:21:54
发布于 2021-03-10 07:21:54
1.9K0
举报
文章被收录于专栏:PowerBI战友联盟PowerBI战友联盟

为什么业务分析师要学 Power BI 尤其是 DAX 呢?我们分三文来说清楚。

书接上回。

上回说到:

  • 作为业务分析师,必须具备强大的逻辑。
  • 如果不具备强大的逻辑,无法分析好业务。

但同时需要注意:

  • 逻辑强大的人,不一定是程序员或者理科生。
  • 程序员以及理科生,不一定是逻辑强大的人。
  • 学习理科和学习编程,有助于提升逻辑思维能力。
  • 提升逻辑思维能力,不一定要学习理科或者学习编程。

请理解以上高中数学带出的必要条件,非充分非必要条件。

那问题来了:

  • 这和 PowerBI DAX 有啥关系?
  • 如果还不具备强大的逻辑思维,怎么办?

本文来继续分析。

本文会提及几个重要的技术工具,包括:python,excel,power bi,R 语言,SQL,大数据等。

先提前声明:他们都是在某些场景下非常适合的工具,也可以在各自领域成就伟大的高手。

这里仅仅就很狭窄的领域:业务分析师,给出在这个狭窄领域的分析。

市场声量

既然是业务分析师,一定要谈业务本身,业务在市场上,我们来看看市场。

我们可以在百度指数里看到这一大盘,也就是市场声量的一个参照。

首先,大数据,是泡沫。

相对于企业的实际规模和需求,大数据在吹了几次泡沫后,依然平静,企业是群体利益驱动理性决策的,冷静下来后会得到归于理性的选择。大数据的确帮助很多业态和企业解决了痛点,但对于创造了中国 80% GDP 的广大企业来说,并不是刚需。

“大数据,是泡沫”的论点是相对于它掀起来的市场声量的。因为很多做数据的咨询和实施公司是 to B 或 to G 类的,只要可以包装出更多概念,就可以一轮轮的收割企业。相对于综合的力量掀起来的市场声量而言,大数据起不到等同的作用,在企业看到效果后会回顾选择更加经济合理的方式。

那么刚需是什么?刚需是基于国内普适化人才能力的,尤其是业务类人员的数字化能力。刚需就是:Excel。

Excel 是数据大盘的基准股。这说明数据的作用的确在整体提升,相对于 Excel 的需求体量再来看看大数据的样子:

没错,完全不在一个量级。

那么作为现在非常火的python,是怎样的呢,如下:

python,的确是从易用开始到有丰富强大生态的纯种编程语言。

需要注意的是 python 的基因是编程语言,还记得 2007 年,豆瓣就在用 python 做了主架构设计。谁会想到这门编程语言现在会火到这个程度:

作为强大的 java 体系,你可以想象吗?python 居然可以从多年前没人听过的编程语言,超过伟大的 java。

python 现在是大学计算机二级考试的选项,非计算机专业的伙伴要过一下计算机二级也是可以选择 python 的。python 的确是老少通吃,从简单到高级,这的确源自其被设计的 DNA。但 python 还是一门纯编程语言。在你用它的那一刻,你就成了一名纯程序员。也就是说:不想成为伟大程序员的业务人员,用不好 python。如果你想精通业务,同时精通python,是可以的,这个目标也是相当伟大的。但这还是要重复一个事实:python 是纯编程语言。如果你不以程序员的心态来学习 python ,那怎么拼得过以绝对科班出身的程序员呢。

在多方的助力下 python 的力量是恐怖的,恐怖到可以和 Excel 分庭抗礼,如下:

这足以让任何人都瞠目结舌。

如果把这幅图作为一个广告,告诉你:

学习 python 是必须的,因为大学计算机二级都是 python,已经在 2021 年超过了 Excel 的市场声量。

这并不夸张,而也是事实。

首先 python 作为编程语言,足够简单入门,而又可以几乎满足处于任何需求的编程诉求,再加之市场的认可和营销,当然可以如此。

但要注意:python 是通用编程语言。

但如果回归另一个课题:

以业务分析师为角色的领域呢,在这个领域还有一个重量级选手:R 语言。

来看看 R 语言的市场声量,如下:

R 语言是一门以数据分析为安身立命的 DNA 的纯数据分析,数据科学编程语言,随着数据时代的需求,其声量稳步增长是实实在在的。

但注意,在 python 和 Excel 的面前:

R 在哪里呢,怎么看不到啦呢。

在数据分析领域,数据科学领域,如果说 python 和 R 语言 谁更强相信一定会迎来一场争论战。而作为语言本身,它们的市场声量是极为不同的。

为什么同样可以做数据分析,数据科学,R 语言 和 python 的市场声量完全不同呢?不知道。

但很明显,忽悠一个人学习 python 比忽悠一个人学习 R 语言的忽悠成本更低,只需要打出上图就可以降低成本。

如果在业务分析领域,数据分析领域 python 和 R 语言是不分伯仲的,(这其实是显然的,否则,另一个存在的意义是什么) 那为什么市场声量相差这么大呢?

很简单:因为在业务分析领域,R 语言的市场声量就代表了和 python 一样的该细分领域的声量。

再严谨的说一遍:在业务分析领域,尤其是数据分析,数据科学领域,考虑到诞生的更早,和纯种的 DNA,R 语言可以作为一个基准股。

说了这么多,都没有说过 Power BI,那么来看看 Power BI 吧。

没错,这里加入了 R 语言,Power BI,Tableau 三者的市场声量。很显然,Power BI 是最弱的。

没错,在表征业务分析,数据分析,数据科学,数据可视化的综合领域的市场声量,Tableau 是王者,R 语言次之,Power BI 最差。

如果考虑到 R 语言还是纯种编程语言的特殊性,那么只剩 Power BI,Tableau,来看这两位 DNA 就是纯种商业智能工具的比较:

但在 Excel 面前,他们都是不值一提的:

没有错,这就是真实的市场。

说到经典的数据管理数据库才是根基,那就必须得看看 SQL 这个伟大的工具:

SQL 代表了低调而稳重的经典,它支撑了在后台大量运行的数据库,不声不响。SQL 的稳中略升的声量,就是市场的真正回应。

而将 SQL,Power BI,Tableau 三者进行比对,则会看到:

在低调而稳重的数据库面前,商业智能是一个薄层。

下面,最经典的一幅图要诞生了:

这幅图太经典了,它融合了十年的市场声量历史,没有作假,全部真实。

  • Excel,代表了基于业务常识可以从零上手的纯业务分析工具。
  • R 语言,代表了科学严谨的统计分析,数据科学而必选的强大工具。
  • SQL,代表了低调而稳重地久经历史检验的强大关系型数据库的世界标准工具。
  • Tableau,代表了直观简明而又十分强大的商业智能数据可视化工具。
  • 那 Power BI 算个啥?

我们后面会分析 Tableau 和 Power BI,但这里请你再仔细看看此图,是不是经典,它的十年,也映照着我们的十年;它的未来十年,也许也映照着我们的未来十年。

为什么很多学习 Power BI 的人会觉得尴尬,有一种夹层感。

对上,不够业务;业务人直接用 Excel 了。

可视化,被 Tableau 挑战的体无全肤,进化了 5 年才有的原型版小多图,而人家 Tableau 在娘肚子里的时候就有了。

稳定和可靠以及大数据量,又无法和 SQL Server 相提并论。

去做数据科学,数据挖掘,和 python 以及 R 语言根本不是一个量级。

所以,对于现今正在运行的企业,怎么会单找一个花了 100 元(还打了 8 折)学了 1 个月 Power BI 教程的初学者呢?尴尬是对的,不尴尬是不对的。

这里先按下,来看另一个路线。

Excel 的下一步是什么

Excel 是一个历史悠久的神器,已经无法用一个词来说明它到底是什么了。

有很多地方已经罗列了 Excel 多么强大,罗叔的风格大家懂的,绝不跟风,甚至很多人都可以预计到上文给出的 Power BI 声量最差,但这里却是研究 Power BI 的。Excel 的一个伟大之处在于:它通过历史,得到了一个重要的信息,在这个阶段的人类普适智力和经济状态下,人们分析数据的宏观通用模式到底是什么?也就是回答了一个做数据分析工具的产品经理的重要问题:人类,大部分人类,对大部分问题,如何分析数据最自然和高效?

要回答这个问题,非常复杂,Excel 通过 30 年的数据给出了清晰无误的精确答案。

从 Excel 的 DNA 来说,是电子表格。电子表格可以存放数据和办公计算。

但马上需要利用电子表格里的数据回答问题。

一个历史上的伟大产物来了:透视表。它就是:人类,大部分人类,对大部分问题,如何分析数据最自然和高效的方法。

透视表,通过放置筛选器字段,行字段,列字段,对数据进行聚合可以立刻回答业务问题,这个能力是非常强大的。

它几乎可以基于有效数据在瞬间回答希望了解到的信息以及问题的答案。

一个实实在在的企业,去想做大数据之前,能实实在在的为做透视表准备好适合的数据更加实在。

这件事非同小可。

通过历史的运行,Excel 收集了这样的数据,以下三个函数是 Excel 中用的最多的):

  • SUM
  • AVERAGE
  • VLOOKUP

这里蕴含着如金子一般巨大价值的信息:

  • 前两个函数表示了聚合。
  • 第三个函数的本质表示建立表之间的关系。

没有错,这就是人类使用 Excel 进行数据分析两种形态:

  • 用 透视表 的方式办公
  • 用 透视表 的方式分析

这两种形态几乎覆盖了 90% 的逻辑诉求,正如我们看到的:

Excel 的这种模式可以表示为:

为了未来的引用方便,罗叔对此定义为:业务分析第一范式:单表透视。

注意 前人没有这样定义过,这里罗叔仅仅是非常主观的选取自认为前人的最伟大成就,并做出整理,这些文章仅仅是开始,我会在后面的文章逐渐构建这个体系,这个体系是基于前人的巨大工作,而罗叔仅仅是从梳理前人的伟大工作中,找出其中最重要的部分,展示给各位。

能够做成业务分析第一范式:单表透视 已经非常强大。

但随着业务的发展,其复杂度日益加剧,数据量逐渐变大,那么,一套成功的业务分析工具则必须考虑三点:

  • 第一,必须彻底地实现或者抄袭,拷贝,复刻业务分析第一范式:单表透视。
  • 第二,沿着业务分析第一范式:单表透视,进一步解决复杂数据的问题。
  • 第三,沿着业务分析第一范式:单表透视,进一步解决复杂分析的问题。

这里可以提前提到:

  • DAX,就是走了第二号路线,由伟大的 DAX 之父(曾经清华科班专业第一)带队。
  • Tableau,就是走了第三号路线,由伟大的斯坦福三组合实现。

这个故事很有意思,罗叔根本不曾知晓,但罗叔可以凭借逻辑分析和公开资料连起来这个故事。我们在后面的文章为大家展开这个故事。

DAX 之父和他的同事正在开发 DAX 引擎图:

为什么业务人员要学习 DAX ,请大家继续关注,我是罗叔。这就是走了二号路线,即:

基于 Excel 30 年已经证明的业务分析第一范式:单表透视,进一步实现:复杂数据。

我们现在使用的 Power BI,哦,不,准确讲,是 DAX,它精确地诞生于 2008 年左右,但其思想,罗叔猜测可以追溯到 2004 年或者以前。

再来看 Tableau 的团队。当年:

这是他们发明 Tableau 的前身的时候(2002年左右),斯坦福数据可视化三巨头。20年后的今天:

当年(2002年左右),他们已经实现了实验室产品 Tableau 的前身 POLARIS,如下:

在该系统下的作图如下:

用过 Tableau 的伙伴可以发现,20 年来,这个 DNA 没有变化,在他们的论文中明确地指出:这是透视表的扩展。

是不是很过瘾?

我们要强调:

但随着业务的发展,其复杂度日益加剧,数据量逐渐变大,那么,一套成功的业务分析工具则必须考虑三点:

  • 第一,必须彻底地实现或者抄袭,拷贝,复刻业务分析第一范式:单表透视。
  • 第二,沿着业务分析第一范式:单表透视,进一步解决复杂数据的问题。
  • 第三,沿着业务分析第一范式:单表透视,进一步解决复杂分析的问题。

为何 Power BI 和 Tableau 是当今世界商业智能的两大巨头,罗叔给出的答案与众不同,因为:他们正是沿着必须该走的路线,分走了两端。

一端是以研究复杂数据建模为擅长的清华大叔 DAX 之父带队。

一端是以研究计算机图形学为擅长的斯坦福数据可视化三巨头研发。

分别演化了近乎 20 年,形成了:

  • 以 DAX 引擎为核心的 Power BI
  • 以 VizQL 引擎为核心的 Tableau

它们证实分别在透视表的两个延展方向上做到了近乎极致,因此,可以分庭抗礼。

如果这些内容可以拍成电影,相信会非常精彩。

Power BI 和 DAX 是两回事

从热爱 Power BI 的角度,客观的说,在 Tableau 面前,Power BI 称不上专业的数据可视化,它仅仅是套在 DAX 引擎上吃着 Excel 透视表老本的组合体而已。

如果没有 DAX,Power BI 就又是一个失败的作品。可惜历史就是这样,最好的数据模型引擎没有套上最强大的可视化引擎。

另外,从商业角度再进一步复杂起来后,就不是那样了。我们透过商业层面,从最单纯的理论层面给出了找出本质。

王志远又问了,那罗叔,按照这个逻辑,应该学两个东西:

  • DAX
  • Tableau

这么理解也对。

但对于业务分析师来说,基于强大的数据模型利用透视表和普通可视化已经足以。

在有限的时间和精力内,我们说:

  • DAX 是必须的。
  • Tableau 是可选的。

DAX 是100分,Tableau都是附加分。

DAX 是内功,Tableau 是可以把内功更极限地发挥的外延。

可惜造化弄人,它们偏偏就是两个门派。

这个故事就好玩了,好玩的在于:

我们全部参与其中,我们静观其变,这也是我们的生活。

值得注意的是:

Power BI 和 DAX 是不同的,Power BI 是套在 DAX 引擎上吃着 Excel 透视表老本的组合体。

很多人说 Power BI 是数据可视化工具,更多人也这么学习了,那么结果只会是罗叔不知道。

总结

本文是第二篇,从市场声量来看:

  • Excel,代表了基于业务常识可以从零上手的纯业务分析工具。
  • R 语言,代表了科学严谨的统计分析,数据科学而必选的强大工具。
  • SQL,代表了低调而稳重地久经历史检验的强大关系型数据库的世界标准工具。
  • Tableau,代表了直观简明而又十分强大的商业智能数据可视化工具。
  • 那 Power BI 算个啥?

Power BI 是套在 DAX 引擎上吃着 Excel 透视表老本的组合体。

本文来自罗叔的《BI真经》的《BI进化论》内容。

还是没有完全回答:

  • 逻辑强大这和 PowerBI DAX 有啥关系?
  • 如果还不具备强大的逻辑思维,怎么办?

大家可以进一步思考了,答案要呼之欲出了,但相信已经完全超越你在上篇所想。这里爆出的信息和格局哪是说几个函数可以给出的。

没错,这就是《BI真经》的强大和本质所在。如果补充一句:如果您正在学习商业智能分析,您应该可以分析出来应该学习什么Level的教程了吧,如果还分析不出来,那就别学分析了。

下一篇,我们会为你用严密的逻辑揭示为什么必须要学习 DAX。

未来,我们考虑会拉开讲 Tableau 在可视化层到底和 Power BI 的本质差异在哪里,如果大家可以多多转发点赞,才是罗叔码字的动力,让你看到过瘾。

欢迎留言,还是这个问题,在看了今天的分解后,你认为业务分析师为啥要学习 DAX?

参考:

为什么业务分析师要学 PowerBI DAX - 破解乱象篇 PowerBI 是不是商业智能领域的法拉利 你怎么看

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-02-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PowerBI战友联盟 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
为什么业务分析师要学 PowerBI DAX - 破解乱象篇
如果说业务分析师要基于数据回答问题,那么在当今时代选择一个重要的工具,这个工具应该是什么?
BI佐罗
2021/02/08
9040
PowerBI DAX 模板库来了
虽然 PowerBI 发展得如火如荼,很多人进入 PowerBI 领域却遇到很多障碍,最明显的一项就是来自 DAX 的挑战。
BI佐罗
2020/08/31
2.1K2
PowerBI DAX 模板库来了
BI 界震动 - Power BI Premium 个人版只要每月 120 元
Power BI Premium Per User 定价:每月 120 元人民币。
BI佐罗
2021/03/10
2.3K0
BI 界震动 - Power BI Premium 个人版只要每月 120 元
如何选择数据分析可视化工具?Excel, Tableau还是Power BI?
正确分析使用数据可能会挖到宝藏。那么,作为个人或公司,如何选择分析和可视化数据的工具?
大数据文摘
2020/11/09
9.7K0
如何选择数据分析可视化工具?Excel, Tableau还是Power BI?
被Excel逼疯的第100天,我挖到了500强都在用的8款财务分析工具!
IDC最新报告《2025全球财务数字化白皮书》里说,75%的财务人每天有4小时以上都在收集、整理数据,真正用来做财务分析的时间不到20%。现在企业数据量每年以50%的速度往上涨,Excel是真扛不住了。
帆软BI
2025/08/05
1450
PowerBI 9月更新 DAX驱动可视化
如果你打开 PowerBI Desktop 从头创建一个报告,你会发现让你眼前一亮,本月更新已经使用了新的主题,而且不止一个哦,增加了很多。如果你是一个主题设计师,你会发现可以更加容易和快速地构建主题。不过罗叔不会展开这个,罗叔预测在主题的设计上,微软会提供设计器,而不是停留在手工编写 JSON 的,这不符合微软的调性。当然,对于 JSON 格式的编写,罗叔会专门开一个文章来介绍。这次的更新,罗叔需要强调一个重点:DAX 驱动可视化(首发理念,参考此前可视化类高级文章)。 DAX 驱动可视化指的是,表面上你在拖拽设计可视化,但由于拖拽本身的限制,导致设计者无法完全控制报告的展现,因此,微软提供了一种终极的灵活方式就是通过 DAX 来控制可视化,这是微软在设计产品时候的一个重大选择。DAX 驱动可视化 将在未来更加渗透到每个细节,在这方面,罗叔专门会开专题来分享其中的思想。值得一提的是,这块的内容由微软的实习项目实现,也体现了微软将一些任务分拆并合理利用资源的做法。
BI佐罗
2019/09/23
2.3K0
PowerBI 9月更新 DAX驱动可视化
国家正式公示新职业:商务数据分析师
昨日(2022 年 6 月 14 日),人力资源和社会保障部官网发布《机器人工程技术人员等 18 个新职业信息向社会公示》,公示全文如下:
BI佐罗
2022/07/07
1.6K0
国家正式公示新职业:商务数据分析师
这些年,为了在 Excel 中给序列去重,不知道坑死了多少人
而我们为了在数据时代领先一步,你需要的不仅仅是有局限的学习 Excel 或者 PPT,而是三者。任何一个只强调一者而忽略他们的组合性的方式都会引入误区。
BI佐罗
2019/09/25
2.9K1
这些年,为了在 Excel 中给序列去重,不知道坑死了多少人
三类最常用的数据分析工具,你用过哪一类?
现在,数据分析已经成为企业做出各种经营决策不可或缺的环节,无论是财务、市场、销售还是运营,都离不开数据分析。数据分析是将收集来的各种各样的数据进行分析,提取有用信息,对数据加以详细研究和概括总结的过程。数据分析可帮助企业作出判断,以便制定适当的经营决策。目前市面上的数据分析工具多如牛毛,笔者在此总结了三类最常用的数据分析工具,看看你用过哪一类呢?
数据前沿
2020/10/20
1.5K0
三类最常用的数据分析工具,你用过哪一类?
这些年,Excel不知道坑死了多少人,你有幸免吗?
近日一篇名为 Excel界地震 微软宣布 跨4代人34岁的 VLOOKUP 退休 刷爆朋友圈,几小时就像病毒一样传播起来并很快得到了10W+的阅读,太香了。几乎所有和 Excel 有关的公众号都在发与 VLOOKUP 及 XLOOKUP 有关的文章,这还不够说明地震的嘛。一个小小的 VLOOKUP 其实可以洞悉到人们对 Excel 的依赖度之广之深。
BI佐罗
2019/09/23
2.2K0
这些年,Excel不知道坑死了多少人,你有幸免吗?
Tableau/PowerBI的“割裂”和帆软BI的“集成”
上周,一位Tableau客户辗转发来“问题”,说帆软销售给他们发了一个功能对比清单,大致如下:
Tableau喜乐君
2024/11/25
5210
Tableau/PowerBI的“割裂”和帆软BI的“集成”
这大概是今年最值得推荐的“数据分析工具”
BI全称商业智能(Business Intelligence),在传统企业中,它是一套完整的解决方案。将企业的数据有效整合,快速制作出报表以作出决策。涉及数据仓库,ETL,OLAP,权限控制等模块。
用户5406627
2019/05/15
1.7K0
这大概是今年最值得推荐的“数据分析工具”
关于数据分析工具的终极问题
昨晚在CPDA微课堂做了场直播,聊了一个终极问题,也是很多人在关注的话题。我把内容整理下来供读者们阅读、质疑和思考。(全文长6000多字)
公众号PowerBI大师
2019/08/07
1.2K0
关于数据分析工具的终极问题
一文帮你洞悉PowerBI DAX思维流程的精髓
很多伙伴都希望快速理解 Power BI 以及 DAX 的精髓,以便可以快速工作,但往往被很多程序员误导必须要学习编程。还有很多程序员看了大量图书,在自我总结,希望可以提纲挈领地找到自助商业智能分析框架或者密码。在下,也是其中一员,在回答自己和伙伴的各种疑问的过程中,在积累中有所感悟,将这些分享给你,也许可以帮助有缘人打通,快速领略模型驱动的自助商业智能分析之妙。
BI佐罗
2021/11/24
1.4K0
一文帮你洞悉PowerBI DAX思维流程的精髓
2019 年排名前6的数据分析工具
对于数据分析工具,我们通过会有一个疑问,在众多的数据分析工具中,到底有什么区别,哪一个更好,我又应该学习哪一个呢?
周萝卜
2020/05/22
1.8K0
数据可视化分析工具如何在国内弯道超车,迅速崛起?
数据可视化:Data Visualization,即视觉传达,为了清晰有效地传递信息,数据可视化通过统计图形、图表、信息图表和其他工具,例如点、线或条对数字数据进行编码,以便在视觉上传达定量信息。 数据可视化对企业的重要性 有效的可视化可以帮助用户分析和推理数据和证据,它使复杂的数据更容易理解和使用。为了有效地传达思想概念,美学形式与数据功能在可视化中齐头并进,通过直观地传达关键的数据与特征,从而实现业务深入洞察。 数据可视化是企业进行数据分析、数据挖掘、数据治理非常重要的方式。
葡萄城控件
2022/09/30
1.3K0
数据可视化分析工具如何在国内弯道超车,迅速崛起?
2025年最新智能BI工具市场评估与推荐指南
在数字化浪潮席卷全球的当下,数据已成为企业认知世界、洞悉市场及优化决策的核心基石。然而,一个普遍的矛盾正困扰着无数组织:我们拥有前所未有的海量数据,却常常陷入“洞察贫乏”的困境。传统的商业智能(BI)工具,尽管在过去扮演了重要角色,但其高昂的技术门槛、复杂的ETL(数据提取、转换、加载)流程以及漫长的分析周期,使其逐渐成为企业敏捷决策的瓶颈。业务人员的需求往往在IT部门的工单队列中漫长等待,数据分析师则深陷于繁琐的数据准备与报表制作中。
用户7930345
2025/07/31
1000
微软称Excel是原始BI并教你如何选择现代BI指南
本文不是标题党,虽然你可能是Excel的中毒(重度)拥趸(我也是),但微软确实这么说了。但我们不必纠结这个问题,打开视野来看看。近日,微软发布了《精明领导者指南之评估现代 BI 和分析平台》指南。
BI佐罗
2020/02/26
1.2K0
PowerBI系列之什么是PowerBI
大家好,我是小黎子!一个专注于数据分析整体数据仓库解决方案的程序猿!今天小黎子就给大家介绍一个数据分析工具由Microsoft出品的全新数据可视化工具Power BI。微软Excel很早就支持了数据透视表,并基于Excel开发了相关BI插件,如Power Query,PowerPrivot,Power View和Power Map等。这些插件让Excel如同装上了翅膀,瞬间高大上。由于Excel的普及和可操作性简单,加上数据透视表技术已经深入人心,所以全新的Power BI数据可视化工具呼之欲出,相比Qlik,Tableau等产品,有着无可比拟的天然优势。我们看一下最新2019数据分析魔力象限:
黄昏前黎明后
2019/10/21
4.3K0
数据可视化工具大比拼:从Tableau到Power BI,谁才是你的最佳拍档?
在这个数据驱动的时代,数据可视化已经从“锦上添花”变成了“刚需”。当今市场上的两大热门数据可视化工具——Tableau和Power BI,各有千秋,各有拥趸。那么问题来了:面对琳琅满目的数据,可视化工具究竟该如何选?今天,我们就从功能、使用场景、性价比以及代码支持等多个维度,聊聊这场数据可视化的巅峰对决。
Echo_Wish
2025/04/15
7060
数据可视化工具大比拼:从Tableau到Power BI,谁才是你的最佳拍档?
推荐阅读
相关推荐
为什么业务分析师要学 PowerBI DAX - 破解乱象篇
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档