Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习数学知识结构图

机器学习数学知识结构图

作者头像
SIGAI学习与实践平台
发布于 2021-03-04 06:33:48
发布于 2021-03-04 06:33:48
1.4K0
举报

早在2018年和2019年,SIGAI微信公众号先后发布过“机器学习算法地图”,“深度学习算法地图”,对机器学习深度学习的知识脉络进行了梳理与总结,帮助大家建立整体的知识结构。这两张知识结构图的纸质版发行量和电子版下载量已经超过10万,有不少高校的机器学习课程还特地讲到了这两张图。在今天这篇文章里,我们将对机器学习的数学知识进行总结,画出类似的结构图。由于数学知识体系太过庞大,因此我们分成了整体知识结构图,以及每门课的知识结构图。

整体结构

先说整体结构。在机器学习中所用到的主要有微积分、线性代数、概率论、最优化方法、信息论、随机过程、图论这几门数学课的知识。它们之间的关系如下图所示。

在这里,一元函数微积分,线性代数与矩阵论是最基础的知识,也是其他课程的先修课程。其中多元函数微积分是一元函数微积分向多元函数的推广,且使用了线性代数与矩阵论的知识。

最优化方法(连续优化问题,这里不考虑随机优化等特殊的算法)以多元函数微积分为基础,梯度下降法、牛顿法、拟牛顿法等数值优化算法的推导,以及拉拉格朗日乘数法等解析优化算法的推导与证明,均使用了多元函数微积分的知识。

概率论以微积分和线性代数为基础,导数、积分在这里被大量地使用。信息论与随机过程都是概率论的延伸,要学好它们,必须先掌握概率论。

图论中使用了线性代数的知识比如邻接矩阵,普图理论中的拉普拉斯矩阵等。在机器学习中,它还与概率论结合,诞生了概率图模型这种模型。

对于机器学习中具体用到了哪些数学知识,我们之前写过一篇文章,这里给出一个更全面的总结,供大家参考,如下表所示。这里没有列出机器学习理论(如PAC理论,VC维等)所需要的数学知识。

微积分

微积分由一元函数微积分、多元函数微积分两部分构成,它是整个高等数学的基石。通常情况下,机器学习需要得到一个函数(模型,或者说假设),既然是函数,那自然就离不开微积分了。微积分为我们研究函数的性质,包括单调性、凹凸性、以及极值提供了理论依据。同时它也是学习概率论、信息论、最优化方法等后续课程的基础。

在机器学习中,最应该被记住的微积分知识点是下面的两张图。第一张图是微分学:

微分学中最应该被记住的是链式法则和泰勒公式。后者是理解在机器学习中使用最多的梯度下降法、牛顿法、拟牛顿法等数值优化算法推导的基础,前者为计算各种目标函数的导数提供了依据。借助于雅克比矩阵,多元函数的链式法则有简介而优雅的表达,多元函数反函数求导公式可以与一元函数反函数求导公式达成形式上的统一。借助于梯度、Hessian矩阵以及向量内积、二次型,多元函数的泰勒公式与一元函数的泰勒公式可以达成形式上的统一。

第二张图是积分学:

积分学中最关键的是积分换元公式,借助于雅克比行列式,可以与一元函数定积分的换元公式达成形式上的统一。积分换元公式在后面的概率论(如概率分布变换,逆变换采样算法),信息论(如多维正态分布的联合熵)等课程中有广泛的应用,务必要掌握。

线性代数

接下来看线性代数。线性代数对于机器学习是至关重要的。机器学习算法的输入、输出、中间结果通常为向量、矩阵。使用线性代数可以简化问题的表达,用一个矩阵乘法,比写成多重求和要简洁明了得多。线性代数是学习后续数学课程的基础。它可以与微积分结合,研究多元函数的性质。线性代数在概率论中也被使用,比如随机向量,协方差矩阵。线性代数在图论中亦有应用-如图的邻接矩阵,拉普拉斯矩阵。在随机过程中同样有应用-如状态转移矩阵。下面的图列出了线性代数的核心知识结构:

向量与矩阵是线性代数中的基本计算对象,这门课基本上围绕着它们而展开。特征值与特征向量是机器学习中使用频率仅次于向量和矩阵的知识点,它连接其了众多的知识点,决定了矩阵的若干重要性质。

概率论

概率论对于机器学习来说也是至关重要的,它是一种重要的工具。如果将机器学习算法的输入、输出看作随机变量/向量,则可以用概率论的观点对问题进行建模。使用概率论的一个好处是可以对不确定性进行建模,这对于某些问题是非常有必要的。另外,它还可以挖掘变量之间的概率依赖关系,实现因果推理。概率论为某些随机算法-如蒙特卡洛算法、遗传算法,以及随机数生成算法-包括基本随机数生成、以及采样算法提供了理论依据和指导。最后,概率论也是信息论,随机过程的先导课程。下面这张图清晰地列出了概率论的核心知识:

下面这张图是对机器学习中概率模型的总结:

从这张图可以清晰的看出频繁使用的概率论知识点,最重要的莫过于条件概率,贝叶斯公式,正态分布,最大似然估计。

最优化方法

最优化方法在机器学习中处于中心地位。几乎所有机器学习算法最后都归结于求解最优化问题,从而确定模型参数,或直接获得预测结果。前者的典型代表是有监督学习,通过最小化损失函数或优化其他类型的目标函数确定模型的参数;后者的典型代表是数据降维算法,通过优化某种目标函数确定降维后的结果,如主成分分析。下面这张图列出了最优化方法的核心知识:

信息论

信息论是概率论的延伸,在机器学习与深度学习中通常用于构造目标函数,以及对算法进行理论分析与证明。在机器学习尤其是深度学习中,信息论的知识随处可见,比如:

1. 决策树的训练过程中需要使用熵作为指标

2. 在深度学习中经常会使用交叉熵、KL散度、JS散度、互信息等概念

3. 变分推断的推导需要以KL散度为基础

4. 距离度量学习、流形降维等算法也需要信息论的知识

总体来说,在机器学习中用得最多的是熵,交叉熵,KL散度,JS散度,互信息,条件熵等。下面这张图列出了信息论的核心知识:

熵是最基本的概念,推广到多个概率分布,可以得到交叉熵,KL散度,以及JS散度。推广到多个随机变量,可以得到互信息,条件熵。

随机过程

随机过程同样是概率论的延伸。在机器学习中,随机过程被用于概率图模型、强化学习、以及贝叶斯优化等方法。不理解马尔可夫过程,你将对MCMC采样算法一筹莫展。下面这张图列出了机器学习中随机过程的核心知识:

在机器学习中所用的主要是马尔可夫过程和高斯过程。隐马尔可夫过程,马尔可夫决策过程都是它的延伸。平稳分布、细致平衡条件也是理解MCMC采样的核心基础。

图论

在机器学习中,概率图模型是典型的图结构。流形降维算法与谱聚类算法均使用了谱图理论。计算图是图的典型代表,图神经网络作为一种新的深度学习模型,与图论也有密切的关系。下面这张图列出了图论的整体知识结构:

这里相等难以理解的是谱图理论。谱图理论的核心是拉普拉斯矩阵,归一化拉普拉斯矩阵,理解它们需要扎实的线性代数基础。

对于以上数学知识的系统学习,可以阅读《机器学习的数学》,人民邮电出版社,雷明著。该书上市3周以来收到了读者的广泛好评,有不少热心读者提出了宝贵的意见和建议,近期我们会免费公开本书的配套PPT。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-02-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SIGAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习与深度学习中的数学知识点汇总
在机器学习与深度学习中需要大量使用数学知识,这是给很多初学带来困难的主要原因之一。此前SIGAI的公众号已经写过“学好机器学习需要哪些数学知识”的文章,由于时间仓促,还不够完整。今天重新整理了机器学习与深度学习中的主要知识点,做到精准覆盖,内容最小化,以减轻学习的负担同时又保证学习的效果。这些知识点是笔者长期摸索总结出来的,相信弄懂了这些数学知识,数学将不再成为你学好机器学习和深度学习的障碍。
SIGAI学习与实践平台
2019/09/11
1.3K0
机器学习与深度学习中的数学知识点汇总
学好机器学习需要哪些数学知识?
“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十分强大的数学工具。”
SIGAI学习与实践平台
2018/08/07
1.6K0
学好机器学习需要哪些数学知识?
机器学习5大数学知识(附详细课程资源)
机器学习理论是一个涵盖统计、概率、计算机科学和算法方面的领域,该理论的初衷是以迭代方式从数据中学习,找到可用于构建智能应用程序的隐藏洞察。
Ai学习的老章
2019/08/01
1.4K0
机器学习中的数学基础
导语:现在出现了很多易于使用的机器学习和深度学习的软件包,例如 scikit-learn, Weka, Tensorflow 等等。机器学习理论是统计学、概率学、计算机科学以及算法的交叉领域,是通过从
IT派
2018/03/28
1.2K0
机器学习中的数学基础
练功 | 机器学习应补充哪些数学基础?
? 编者按:很多同学开始学习机器学习时候遇到的最大障碍就是数学基础,机器学习到底需要学习哪些数据知识?要掌握到什么程度呢?希望这篇文章对于大家学习大数据和机器学习有所帮助。 机器学习理论是统计学、概率
小莹莹
2018/04/23
9270
练功 | 机器学习应补充哪些数学基础?
入门AI的数学图谱 | 机器学习涉及的数学知识 | 入门AI系列
在过去几个月里,有几个人联系过我,说他们渴望进军数据科学领域,使用机器学习 (ML) 技术探索统计规律,并打造数据驱动的完美产品。但是,据我观察,一些人缺乏必要的数学直觉和框架,无法获得有用的结果。这是我决定写这篇博客文章的主要原因。最近,易用的机器学习和深度学习工具包急剧增加,比如scikit-learn、Weka、Tensorflow、R-caret等。机器学习理论是一个涵盖统计、概率、计算机科学和算法方面的领域,该理论的初衷是以迭代方式从数据中学习,找到可用于构建智能应用程序的隐藏洞察。尽管机器学习和深度学习有巨大的发展潜力,但要深入掌握算法的内部工作原理并获得良好的结果,就必须透彻地了解许多技术的数学原理。
用户7623498
2020/08/04
6100
不知道如何开始机器学习?这有份初学者指南!
这份指南是为了那些对机器学习感兴趣,但不知如何开始的朋友们准备的。我想大多厌倦在网上搜索大量资料的人都会有挫败感,也放弃了有人能指引他们如何入门的希望。
AI研习社
2018/07/26
4180
不知道如何开始机器学习?这有份初学者指南!
机器学习与深度学习习题集(上)
本文是SIGAI公众号文章作者编写的机器学习和深度学习习题集(上),是《机器学习-原理、算法与应用》一书的配套产品。此习题集课用于高校的机器学习与深度学习教学,以及在职人员面试准备时使用。为了帮助高校更好的教学,我们将会对习题集进行扩充与优化,并免费提供给高校教师使用。对此感兴趣的在校教师和学生可以通过向SIGAI微信公众号发消息获取。习题集的下半部分、所有题目的答案将在后续的公众号文章中持续给出。
SIGAI学习与实践平台
2019/10/14
2.7K0
机器学习与深度学习习题集(上)
人工智能的数学基础 | AI基础
但“数学”二字所包含的内涵与外延太广,到底其中的哪些内容和当前的人工智能技术直接相关呢?
叶锦鲤
2020/02/13
3.2K0
人工智能的数学基础 | AI基础
112页数学知识整理!机器学习-数学基础回顾.pptx
机器学习的基础是数学,数学基础决定了机器学习从业人员的上限,想要学好机器学习,就必须学好数学。
黄博的机器学习圈子
2022/02/23
7100
112页数学知识整理!机器学习-数学基础回顾.pptx
机器学习算法地图2021版
为了帮助大家理清机器学习的知识脉络,建立整体的知识结构,2018年SIGAI推出过机器学习算法地图,纸质版和电子版的阅读量超过10万。两年之后,我们对算法地图进行了优化升级,使得它的结构更为合理清晰,内容更为简洁。下面先看算法地图2021版的整图
SIGAI学习与实践平台
2021/03/22
1.1K0
机器学习算法地图2021版
机器学习中的目标函数总结
几乎所有的机器学习算法都归结为求解最优化问题。有监督学习算法在训练时通过优化一个目标函数而得到模型,然后用模型进行预测。无监督学习算法通常通过优化一个目标函数完成数据降维或聚类。强化学习算法在训练时通过最大化奖励值得到策略函数,然后用策略函数确定每种状态下要执行的动作。多任务学习、半监督学习的核心步骤之一也是构造目标函数。一旦目标函数确定,剩下的是求解最优化问题,这在数学上通常有成熟的解决方案。因此目标函数的构造是机器学习中的中心任务。
SIGAI学习与实践平台
2021/01/05
1.6K0
机器学习中的目标函数总结
怎样成为一名优秀的算法工程师
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。
SIGAI学习与实践平台
2018/08/07
6220
怎样成为一名优秀的算法工程师
怎样成为一名优秀的算法工程师
原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。
SIGAI学习与实践平台
2018/07/12
7340
学机器学习有必要懂数学吗?深入浅出机器学习与数学的关系
小黑,Datawhale团队成员,秦时明月十年铁粉,本科就读于山西大学,保研至天津大学并硕博连读,现为2018级博士,研究方向:脑机接口。
用户1564362
2019/07/04
1.5K1
机器学习的数学基础
我们知道,机器学习的特点就是:以计算机为工具和平台,以数据为研究对象,以学习方法为中心;是概率论、线性代数、数值计算、信息论、最优化理论和计算机科学等多个领域的交叉学科。所以本文就先介绍一下机器学习涉及到的一些最常用的的数学知识。
Ai学习的老章
2019/04/24
9130
机器学习的数学基础
【知识】人工智能数学基础知识
数学是打开科学大门的钥匙。——培根 数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括: 线性代数:如何将研究对象形式化? 概率论:如何描述统计规律? 数理统计:如何以小见大? 最优化理论: 如何找到最优解? 信息论:如何定量度量不确定性? 形式逻辑:如何实现抽象推理? 线性代数:如何将研究对象形式化 事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主
陆勤_数据人网
2018/02/26
1.2K0
想入门机器学习?机器之心为你准备了一份中文资源合集
机器之心整理 参与:机器之心编辑部 机器学习日益广为人知,越来越多的计算机科学家和工程师投身其中。不幸的是,理论、算法、应用、论文、书籍、视频等信息如此之多,很容易让初学者迷失其中,不清楚如何才能提升技能。本文作者依据自身经验给出了一套快速上手的可行方法及学习资源的分类汇总,机器之心在其基础上做了增益,希望对读者有所帮助。 先决条件 机器学习的基础是数学。数学并非是一个可选可不选的理论方法,而是不可或缺的支柱。如果你是一名计算机工程师,每天使用 UML、ORM、设计模式及其他软件工程工具/技术,那么请闭
机器之心
2018/05/09
1.2K0
人工智能-数学基础总结
九层之台,起于累土:线性代数 ---- 必备的数学知识是理解人工智能不可或缺的要素,今天的种种人工智能技术归根到底都建立在数学模型之上,而这些数学模型又都离不开线性代数(linear algebra)的理论框架。 在线性代数中,由单独的数 a 构成的元素被称为标量(scalar):一个标量 a 可以是整数、实数或复数。如果多个标量按一定顺序组成一个序列,这样的元素就被称为向量(vector)。显然,向量可以看作标量的扩展。原始的一个数被替代为一组数,从而带来了维度的增加,给定表示索引的下标才能唯一地确定向量
iOSDevLog
2018/06/13
2.8K0
机器学习里,数学究竟多重要?
【新智元导读】本文的主要目的是提供资源,给出有关机器学习所需的数学上面的建议。数学初学者无需沮丧,因为初学机器学习,并不需要先学好大量的数学知识才能开始。正如这篇文章提到的,最基本的需要是数据分析,然后你可以在掌握更多技术和算法的过程中继续学习数学。 过去几个月里,有不少人联系我,向我表达他们对数据科学、对利用机器学习技术探索统计规律性,开发数据驱动的产品的热情。但是,我发现他们中有些人实际上缺少为了获取有用结果的必要的数学直觉和框架。这是我写这篇文章的主要原因。 最近,许多好用的机器和深度学习软件变得十分
新智元
2018/03/23
7740
相关推荐
机器学习与深度学习中的数学知识点汇总
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档