
这是 LeetCode 上的「1438. 绝对差不超过限制的最长连续子数组」,难度为 Medium。
给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。
如果不存在满足条件的子数组,则返回 0 。
示例 1:
输入:nums = [8,2,4,7], limit = 4
输出:2
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4.
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4.
因此,满足题意的最长子数组的长度为 2 。
示例 2:
输入:nums = [10,1,2,4,7,2], limit = 5
输出:4
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3
提示:
数据范围是
,因此只能考虑「对数解法」和「线性解法」。
对数解法很容易想到「二分」。
在给定 limit 的情况下,倘若有「恰好」满足条件的区间长度为 len,必然存在满足条件且长度小于等于 len 的区间,同时必然不存在长度大于 len 且满足条件的区间。
因此长度 len 在数轴中具有「二段性」。
「问题转化为「如何判断 nums 中是否有长度 len 的区间满足绝对值不超过 limit」」
我们可以枚举区间的右端点 r,那么对应的左端点为 r - len + 1,然后使用「单调队列」来保存区间的最大值和最小值。
class Solution {
public int longestSubarray(int[] nums, int limit) {
int n = nums.length;
int l = 1, r = n;
while (l < r) {
int mid = l + r + 1 >> 1;
if (check(nums, mid, limit)) {
l = mid;
} else {
r = mid - 1;
}
}
return r;
}
boolean check(int[] nums, int len, int limit) {
int n = nums.length;
Deque<Integer> max = new ArrayDeque<>(), min = new ArrayDeque<>();
for (int r = 0, l = r - len + 1; r < n; r++, l = r - len + 1) {
if (!max.isEmpty() && max.peekFirst() < l) {
max.pollFirst();
}
while (!max.isEmpty() && nums[r] >= nums[max.peekLast()]) {
max.pollLast();
}
max.addLast(r);
if (!min.isEmpty() && min.peekFirst() < l) {
min.pollFirst();
}
while (!min.isEmpty() && nums[r] <= nums[min.peekLast()]) {
min.pollLast();
}
min.addLast(r);
if (l >= 0 && Math.abs(nums[max.peekFirst()] - nums[min.peekFirst()]) <= limit) {
return true;
}
}
return false;
}
}
,对于每次 check 而言,每个元素最多入队和出队常数次,复杂度为
。整体复杂度为
上述解法我们是在对 len 进行二分,而事实上我们可以直接使用「双指针」解法找到最大值。
始终让右端点 r 右移,当不满足条件时让 l 进行右移。
同时,还是使用「单调队列」保存我们的区间最值,这样我们只需要对数组进行一次扫描即可得到答案。
class Solution {
public int longestSubarray(int[] nums, int limit) {
int n = nums.length;
int ans = 0;
Deque<Integer> max = new ArrayDeque<>(), min = new ArrayDeque<>();
for (int r = 0, l = 0; r < n; r++) {
while (!max.isEmpty() && nums[r] >= nums[max.peekLast()]) {
max.pollLast();
}
max.addLast(r);
while (!min.isEmpty() && nums[r] <= nums[min.peekLast()]) {
min.pollLast();
}
min.addLast(r);
while (Math.abs(nums[max.peekFirst()] - nums[min.peekFirst()]) > limit) {
l++;
if (max.peekFirst() < l) max.pollFirst();
if (min.peekFirst() < l) min.pollFirst();
}
ans = Math.max(ans, r - l + 1);
}
return ans;
}
}
这是我们「刷穿 LeetCode」系列文章的第 No.* 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode。
「在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。」