前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用V8和node轻松profile分析nodejs应用程序

使用V8和node轻松profile分析nodejs应用程序

作者头像
程序那些事
发布2021-02-25 10:23:40
8040
发布2021-02-25 10:23:40
举报
文章被收录于专栏:程序那些事

简介

我们使用nodejs写好了程序之后,要是想对该程序进行性能分析的话,就需要用到profile工具了。

虽然有很多很方便和强大的第三方profile工具,但是我们这里主要讲解V8和node自带的profile,因为他们已经足够简单和强大了。使用他们基本上可以满足我们的日常分析需要。

下面就一起来看看吧。

使用V8的内置profiler工具

nodejs是运行在V8引擎上的,而V8引擎本身就提供了内置的profile工具,要想直接使用V8引擎,我需要下载V8源代码,然后进行build。一般来说我们有两种build V8的方法。

使用gm来build V8

gm是一个非常方便的all-in-one的脚本,可以用来生成build文件,触发build过程和运行测试用例。

一般来说,gm脚本的位置在:/path/to/v8/tools/dev/gm.py

我们可以为其创建一个alias,方便后面的使用:

代码语言:javascript
复制
alias gm=/path/to/v8/tools/dev/gm.py

build V8:

代码语言:javascript
复制
gm x64.release

build之后进行用例验证:

代码语言:javascript
复制
gm x64.release.check

是不是很简单?

手动build V8

手动build V8就比较麻烦了,我们也可以分为三步,1.生成build文件,2.触发build,3.运行测试用例

我们可以使用gn来为out/foo生成build文件:

代码语言:javascript
复制
gn args out/foo

上面的命令将会开启一个编辑窗口,用来输入gn的参数。

我们可以添加list来查看所有的参数描述:

代码语言:javascript
复制
gn args out/foo --list

当然我们也可以直接指定参数,来创建build文件:

代码语言:javascript
复制
gn gen out/foo --args='is_debug=false target_cpu="x64" v8_target_cpu="arm64" use_goma=true'

除了gn之外,我们还可以使用v8自带的v8gen来创建build文件:

代码语言:javascript
复制
alias v8gen=/path/to/v8/tools/dev/v8gen.py

v8gen -b 'V8 Linux64 - debug builder' -m client.v8 foo

创建好build文件之后,我们就可以进行编译了。

build所有的V8:

代码语言:javascript
复制
ninja -C out/x64.release

只build d8:

代码语言:javascript
复制
ninja -C out/x64.release d8

最后我们运行测试,来验证是否构建成功:

代码语言:javascript
复制
tools/run-tests.py --outdir out/foo
//或者
tools/run-tests.py --gn

生成profile文件

build好V8之后,我们就可以使用其中的命令来生成profile文件了。

找到d8文件:

代码语言:javascript
复制
d8 --prof app.js

通过添加 –prof 参数,我们可以生成一个v8.log文件,这个文件中包含了profiling数据。

注意这时候的v8.log文件虽然不是二进制格式的,但是阅读起来还是有难度的,因为它只是简单的做了log操作,并没有进行有效的统计分析。

我们看下生成的文件:

代码语言:javascript
复制
...
profiler,begin,1000
tick,0x7fff688bbe36,839,0,0x0,6
tick,0x7fff688bc2d2,2081,0,0x0,6
tick,0x100373430,3263,0,0x0,6
code-creation,Builtin,3,3746,0x1008aa020,1634,RecordWrite
code-creation,Builtin,3,3766,0x1008aa6a0,457,EphemeronKeyBarrier
code-creation,Builtin,3,3773,0x1008aa880,44,AdaptorWithBuiltinExitFrame
code-creation,Builtin,3,3781,0x1008aa8c0,294,ArgumentsAdaptorTrampoline
code-creation,Builtin,3,3788,0x1008aaa00,203,CallFunction_ReceiverIsNullOrUndefined
code-creation,Builtin,3,3796,0x1008aaae0,260,CallFunction_ReceiverIsNotNullOrUndefined
code-creation,Builtin,3,3804,0x1008aac00,285,CallFunction_ReceiverIsAny
code-creation,Builtin,3,3811,0x1008aad20,130,CallBoundFunction
...

可以看到日志文件中只记录了事件的发生,但是并没有统计信息。

分析生成的文件

如果想要生成我们看得懂的统计信息,则可以使用:

代码语言:javascript
复制
//windows
tools\windows-tick-processor.bat v8.log

//linux
tools/linux-tick-processor v8.log

//macOS
tools/mac-tick-processor v8.log

来生成可以理解的日志文件。

生成的文件大概是下面样子的:

代码语言:javascript
复制
Statistical profiling result from benchmarks\v8.log, (4192 ticks, 0 unaccounted, 0 excluded).

 [Shared libraries]:
   ticks  total  nonlib   name
      9    0.2%    0.0%  C:\WINDOWS\system32\ntdll.dll
      2    0.0%    0.0%  C:\WINDOWS\system32\kernel32.dll

 [JavaScript]:
   ticks  total  nonlib   name
    741   17.7%   17.7%  LazyCompile: am3 crypto.js:108
    113    2.7%    2.7%  LazyCompile: Scheduler.schedule richards.js:188
    103    2.5%    2.5%  LazyCompile: rewrite_nboyer earley-boyer.js:3604
    103    2.5%    2.5%  LazyCompile: TaskControlBlock.run richards.js:324
     96    2.3%    2.3%  Builtin: JSConstructCall
    ...

用惯的IDE的同学可能在想,能不能有个web页面来统一展示这个结果呢?

有的,V8提供了profview工具,让我们可以从web UI来分析生成的结果。

profview是一个html工具,我们可以从 https://chromium.googlesource.com/v8/v8.git/+/master/tools/profview/ 下载。

如果要使用profview,我们还需要对第一步生成的v8.log文件进行预处理:

代码语言:javascript
复制
linux-tick-processor --preprocess > v8.json

然后在profview页面上传v8.json进行分析即可。

生成时间线图

–prof 还可以接其他参数,比如 –log-timer-events, 通过使用这个参数可以用来统计V8引擎中花费的时间。

代码语言:javascript
复制
d8 --prof --log-timer-events app.js

tools/plot-timer-events v8.log

第一个命令生成v8.log文件,第二个命令会生成一个timer-events.png图形文件,更加直观的展示数据。

因为生成日志实际上对程序的性能是有一定的影响的,我们还可以为plot-timer-events添加失真因子,来纠正这个问题。如果我们没有指定纠正因子,脚本会自动进行查找。当然,我们也可以向下面这样手动指定:

代码语言:javascript
复制
tools/plot-timer-events --distortion=4500 v8.log

使用nodejs的profile工具

在nodejs 4.4.0之前,只能下载V8的源代码进行编译,才能进行profile。而在nodejs 4.4.0之后,node命令已经集成了V8的功能。

我们可以使用 node –v8-options 来查看 node中可用的V8参数:

代码语言:javascript
复制
node  --v8-options
SSE3=1 SSSE3=1 SSE4_1=1 SAHF=1 AVX=1 FMA3=1 BMI1=1 BMI2=1 LZCNT=1 POPCNT=1 ATOM=0
Synopsis:
  shell [options] [--shell] [<file>...]
  d8 [options] [-e <string>] [--shell] [[--module] <file>...]

  -e        execute a string in V8
  --shell   run an interactive JavaScript shell
  --module  execute a file as a JavaScript module

Note: the --module option is implicitly enabled for *.mjs files.

The following syntax for options is accepted (both '-' and '--' are ok):
  --flag        (bool flags only)
  --no-flag     (bool flags only)
  --flag=value  (non-bool flags only, no spaces around '=')
  --flag value  (non-bool flags only)
  --            (captures all remaining args in JavaScript)

Options:
  --use-strict (enforce strict mode)
        type: bool  default: false
  --es-staging (enable test-worthy harmony features (for internal use only))
        type: bool  default: false
...

参数很多,同样的我们可以使用 –prof 参数:

代码语言:javascript
复制
node --prof app.js

会在本地目录生成一个类似 isolate-0x102884000-14025-v8.log 的文件。

文件的内容和V8生成的一致,这里就不列出来了。

要想分析这个文件,可以使用:

代码语言:javascript
复制
node --prof-process isolate-0x102884000-14025-v8.log > processed.txt

看下生成的分析结果:

代码语言:javascript
复制
Statistical profiling result from isolate-0x102884000-14025-v8.log, (296 ticks, 4 unaccounted, 0 excluded).

 [Shared libraries]:
   ticks  total  nonlib   name
      6    2.0%          /usr/lib/system/libsystem_pthread.dylib
      6    2.0%          /usr/lib/system/libsystem_kernel.dylib
      2    0.7%          /usr/lib/system/libsystem_malloc.dylib
      1    0.3%          /usr/lib/system/libmacho.dylib
      1    0.3%          /usr/lib/system/libcorecrypto.dylib

 [JavaScript]:
   ticks  total  nonlib   name

...

 [Summary]:
   ticks  total  nonlib   name
      0    0.0%    0.0%  JavaScript
    276   93.2%   98.6%  C++
     24    8.1%    8.6%  GC
     16    5.4%          Shared libraries
      4    1.4%          Unaccounted

 [C++ entry points]:
   ticks    cpp   total   name
    142   63.1%   48.0%  T __ZN2v88internal21Builtin_HandleApiCallEiPmPNS0_7IsolateE
     82   36.4%   27.7%  T __ZN2v88internal40Builtin_CallSitePrototypeGetPromiseIndexEiPmPNS0_7IsolateE
      1    0.4%    0.3%  T __ZN2v88internal36Builtin_CallSitePrototypeGetFileNameEiPmPNS0_7IsolateE
...


和V8的也很类似。

从Summary和各个entry points中,我们可以进一步分析程序中到底哪一块占用了较多的CPU时间。

上面的百分百的意思是,在采样的这些数据中,有93.2%的都在运行C++代码。那么我们接下来就应该去看一下,到底是哪些C++代码占用了最多的时间,并找出相应的解决办法。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-01-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序那些事 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
  • 使用V8的内置profiler工具
    • 使用gm来build V8
      • 手动build V8
        • 生成profile文件
          • 分析生成的文件
            • 生成时间线图
            • 使用nodejs的profile工具
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档