前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用 OpenCV 替换图像的背景

使用 OpenCV 替换图像的背景

作者头像
fengzhizi715
发布2021-02-05 11:21:51
2.3K0
发布2021-02-05 11:21:51
举报
文章被收录于专栏:Java与Android技术栈

一. 业务背景

在我们的某项业务中,需要通过自研的智能硬件“自动化”地拍摄一组组手机的照片,这些照片有时候因为光照的因素需要考虑将背景的颜色整体替换掉,然后再呈现给 C 端用户。这时就有背景替换的需求了。

二. 技术实现

使用 OpenCV ,通过传统的图像处理来实现这个需求。

方案一:

首先想到的是使用 K-means 分离出背景色。

大致的步骤如下:

  1. 将二维图像数据线性化
  2. 使用 K-means 聚类算法分离出图像的背景色
  3. 将背景与手机二值化
  4. 使用形态学的腐蚀,高斯模糊算法将图像与背景交汇处高斯模糊化
  5. 替换背景色以及对交汇处进行融合处理

k-平均算法(英文:k-means clustering)源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。k-平均聚类的目的是:把 n 个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。这个问题将归结为一个把数据空间划分为Voronoi cells的问题。

K-means 算法思想为:给定n个数据点{x1,x2,…,xn},找到K个聚类中心{a1,a2,…,aK},使得每个数据点与它最近的聚类中心的距离平方和最小,并将这个距离平方和称为目标函数,记为Wn,其数学表达式为:

K-means.png

K-means 算法基本流程:

  1. 初始的 K 个聚类中心。
  2. 按照距离聚类中心的远近对所有样本进行分类。
  3. 重新计算聚类中心,判断是否退出条件: 两次聚类中心的距离足够小视为满足退出条件; 不退出则重新回到步骤2。
代码语言:javascript
复制
int main() {

    Mat src = imread("test.jpg");
    if (src.empty()) {
        printf("could not load image...\n");
        return -1;
    }
    imshow("origin", src);

    // 将二维图像数据线性化
    Mat data;
    for (int i = 0; i < src.rows; i++) {//像素点线性排列
        for (int j = 0; j < src.cols; j++)
        {
            Vec3b point = src.at<Vec3b>(i, j);
            Mat tmp = (Mat_<float>(1, 3) << point[0], point[1], point[2]);
            data.push_back(tmp);
        }
    }

    // 使用K-means聚类
    int numCluster = 4;
    Mat labels;
    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
    kmeans(data, numCluster, labels, criteria, 4, KMEANS_PP_CENTERS);

    // 背景与手机二值化
    Mat mask = Mat::zeros(src.size(), CV_8UC1);
    int index = src.rows * 2 + 2;  //获取点(2,2)作为背景色
    int cindex = labels.at<int>(index);
    /*  提取背景特征 */
    for (int row = 0; row < src.rows; row++) {
        for (int col = 0; col < src.cols; col++) {
            index = row * src.cols + col;
            int label = labels.at<int>(index);
            if (label == cindex) { // 背景
                mask.at<uchar>(row, col) = 0;
            }
            else {
                mask.at<uchar>(row, col) = 255;
            }
        }
    }
    imshow("mask", mask);

    // 腐蚀 + 高斯模糊:图像与背景交汇处高斯模糊化
    Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    erode(mask, mask, k);
    GaussianBlur(mask, mask, Size(3, 3), 0, 0);

    // 更换背景色以及交汇处融合处理
    RNG rng(12345);
    Vec3b color;  //设置的背景色
    color[0] = 255;//rng.uniform(0, 255);
    color[1] = 255;// rng.uniform(0, 255);
    color[2] = 255;// rng.uniform(0, 255);
    Mat result(src.size(), src.type());

    double w = 0.0;   //融合权重
    int b = 0, g = 0, r = 0;
    int b1 = 0, g1 = 0, r1 = 0;
    int b2 = 0, g2 = 0, r2 = 0;

    for (int row = 0; row < src.rows; row++) {
        for (int col = 0; col < src.cols; col++) {
            int m = mask.at<uchar>(row, col);
            if (m == 255) {
                result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col); // 前景
            }
            else if (m == 0) {
                result.at<Vec3b>(row, col) = color; // 背景
            }
            else {/* 融合处理部分 */
                w = m / 255.0;
                b1 = src.at<Vec3b>(row, col)[0];
                g1 = src.at<Vec3b>(row, col)[1];
                r1 = src.at<Vec3b>(row, col)[2];

                b2 = color[0];
                g2 = color[1];
                r2 = color[2];

                b = b1 * w + b2 * (1.0 - w);
                g = g1 * w + g2 * (1.0 - w);
                r = r1 * w + r2 * (1.0 - w);

                result.at<Vec3b>(row, col)[0] = b;
                result.at<Vec3b>(row, col)[1] = g;
                result.at<Vec3b>(row, col)[2] = r;
            }
        }
    }
    imshow("final", result);

    waitKey(0);
    return 0;
}

背景替换的效果.png

方案二:

方案一的算法并不是对所有手机都有效,对于一些浅色的、跟背景颜色相近的手机,该算法会比较无能为力。

相近颜色替换背景的效果.png

于是换一个思路:

  1. 使用 USM 锐化算法对图像增强
  2. 再用纯白色的图片作为背景图,和锐化之后的图片进行图像融合。

图像锐化是使图像边缘更加清晰的一种图像处理方法。

USM(Unsharpen Mask) 锐化的算法就是对原图像先做一个高斯模糊,然后用原来的图像减去一个系数乘以高斯模糊之后的图像,然后再把值 Scale 到0~255的 RGB 素值范围之内。基于 USM 锐化的算法可以去除一些细小的干扰细节和噪声,比一般直接使用卷积锐化算子得到的图像锐化结果更加真实可信。

代码语言:javascript
复制
int main() {
    Mat src = imread("./test.jpg");
    if (src.empty()) {
        printf("could not load image...\n");
        return -1;
    }
    namedWindow("src", WINDOW_AUTOSIZE);
    imshow("origin", src);

    Mat blur_img, usm;
    GaussianBlur(src, blur_img, Size(0, 0), 25);
    addWeighted(src, 1.5, blur_img, -0.5, 0, usm);
    imshow("usm", usm);

    Mat roi = Mat(Size(src.cols,src.rows), CV_8UC3, Scalar(255, 255, 255));

    Mat dst;
    addWeighted(usm, 1.275, roi, 0.00015, 0, dst);

    imshow("final", dst);

    waitKey(0);
    return 0;
}

其中,addWeighted 函数是将两张大小相同、类型相同的图片进行融合。数学公式如下:

代码语言:javascript
复制
dst = src1*alpha + src2*beta + gamma;

融合后的效果.png

三. 总结

其实,我尝试过用 OpenCV 多种方式实现该功能,也尝试过使用深度学习实现。目前还没有最满意的效果。后续,我会更偏向于使用深度学习来实现该功能。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一. 业务背景
  • 二. 技术实现
    • 方案一:
      • 方案二:
      • 三. 总结
      相关产品与服务
      图像处理
      图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档