前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >做有用的数据分析,从做好MVP开始

做有用的数据分析,从做好MVP开始

作者头像
接地气的陈老师
发布2021-01-25 16:32:58
5960
发布2021-01-25 16:32:58
举报
文章被收录于专栏:接地气学堂

新年到来,很多同学雄心勃勃想在工作中做出成绩,这里推荐数据分析的MVP方法,能为大家的工作保驾护航。同学们坐稳扶好,下边开始系统讲解哦

0

数据分析的MVP是什么

MVP(Minimum Viable Product)原本是应用于产品设计的方法。指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。

数据分析的MVP方法,是在数据正式生产出来以前,先根据数据需求和使用场景,提供虚拟的数据结果,从而检验数据有效性,发现真正的数据需求。

这套方法在数据分析领域非常好使!因为它能解决数据分析的核心难题:做了半天,没有屁用。数据分析背后的《统计学》《数学》《运筹学》《博弈论》《机器学习》各种理论多了去了,因此极易引发自嗨。做数据的自己嗨得不行,各种理论算的腾挪跌宕,到了用户那里:

★ “我早知道了!”

★ “你做的有啥用!”

★ “你做的咋落地!”

一键三连。这项目就必败无疑了。

数据分析的MVP方法,目的就是提前梳理清楚:数据如何对业务有用的逻辑,从而避免上述悲剧。而看似牛逼,实则然并卵的数据分析,在现实中多的很……

1

1.0版本MVP

举个简单例子,比如互联网平台-广告销售团队提出:“要建立业务员用户画像,掌握每个业务员的性别、年龄、行为、转化率,以提高业绩”。

这时候咋办?

如果用MVP思路,先不要急着去跑数,也不要急着列一大堆“用户画像标准指标”,而是直接拿着业务方提的最初的需求:“性别、年龄、行为、转化率,以提高业绩”直接给一个虚拟结果,然后确认:“如果我真的提供这些东西,你们真的能提高业绩?”——让他确认

‍‍‍‍‍

至少只基于这一句话来看,数据分析能输出的结论是完全无用的。1.0版本的MVP测试不通过,要么放弃这个需求,要么继续想想:该怎么更好的抓用户痛点。这样把数据推向2.0版本。

2

2.0版本MVP

进一步看,1.0版本的问题在于:没有清晰目标。所谓画像指标一大堆,到底看了要干啥没想清楚。如果聚集目标,比如:找到业绩好的业务员。这样就更清晰了一步。

这里就需要引入更多分析,因为“好”“不好”本身就需要做分析

1、用什么指标衡量好

2、连续好,还是单次好

3、在什么范围内评选好

在这个阶段,做MVP时,可以直接把一些可预计的,很纠结的问题提前丢出来,和业务方一起提前思考应对方案,而不是等着跑了一大堆数据,自己闷头计算好几轮以后再讨论。越早讨论,越能提前刨累,避免无用功。

比如评价:“好/坏”中常见的多指标重叠问题(如下图)

比如业绩表现不稳定问题(如下图)

至于和本阶段无关的指标,可以大胆做减法,丢了再说。有新的目标出来,再围绕新的目标组织数据。避免不分青红皂白,先捞一堆数再说的做法——数据分析师不能按时下班,都是被这些破事折腾的。

把这些梳理清楚,就有了2.0版本的MVP。(如下图)

看起来,似乎已经比1.0版清晰了很多,删减了很多无效指标,聚焦到一个明确的目标上。注意,这时候仍然还没有跑任何数据,只是基于经验的虚拟,但是已经能把“早就知道了”的数据暴露出来,并且能过滤掉“其实没啥用”的指标,并且把可能有歧义的地方以具体案例的形式具体讨论,从而极大规避问题。

但是注意,这还不是一个合格的MVP,因为知道谁好谁坏,又能怎样?知道李四是真的好了,大家就能成为李四吗?还是根本李四是不可复制的,我得找更多类似李四的人进来?这些问题都没有答案。所以此时还是无法直接得出:这数据就能提高业绩。MVP测试不通过,继续!

3

3.0版本MVP

只告诉谁好,谁不好是不能提升业绩的。业绩是一线做出来的,一线需要的是SOP,是弹药,因此数据要进一步做,比如:

1、优秀标杆的数据指标(呼叫次数?时间分配?跟进机会?)

2、优秀标杆的目标客户(是否特定客户容易成功?)

3、优秀标杆的销售技巧(用哪些话术?利用哪些物料/活动?)

注意,这里已经不仅仅是数据的范畴了,数据只能打标签,列指标。但话术、语气、时机把握是需要培训/业务部门提供的。因此在此阶段做MVP的时候,可以直接向业务部门明确:是否只输出数据就能满足需求。如果不能,趁早拉其他部门一起干活,不要自己埋头别憋数据。

4

4.0版本MVP

看起来3.0版本已经很厉害了。然而有个隐藏的BUG,就是别人有没有可能学会。注意,这个不可知,会极大的阻碍业务认可数据分析的结果——落地不见效,到底是因为数据分析结论错了,还是执行没到位?这个可得提前安排明白,不然事后背锅分分钟的事。

因此,还需要在现在版本基础上,增加测试环节,检验到底有没有用。

这样,又涉及到:

1、选多大范围进行测试

2、测试时间周期多长

3、如何排除节假日、活动等其他因素

4、测试结果认证标准

把这些想清楚了,就有4.0版本。

在这个阶段,终于能将数据需求,指向一个业务期望的“提升业绩”的结果了。并且最终结果有测试数据回收验证,即使测试不成立,也有备用方案垫底。这时候可以放心大胆去跑数,跑出来一定有用。

5

MVP测试的广泛应用

注意,MVP测试,是紧密围绕用户需求的。上边的例子之所以做了好几个版本,源头上是因为用户期望值高,指望直接见业绩。如果用户期望值不高,MVP测试可以很简单。

比如:

★ 用户需求是:目前没有数据→ 尽快提供数据

★ 用户需求是:目前数据太多→ 删掉无用指标

★ 用户需求是:目标数据太乱→ 重新整理逻辑

★ 用户需求是:不清楚问题在哪→ 输出可量化的问题点

这些只要提前虚拟个数据,做个图确认下需求,就能解决

稍微复杂一点的,比如用户需求是:精准预测销量,可能只要梳理两三步,就能更细化范围,提升有用程度(如下图)。

6

为什么要推MVP方法

数据分析领域,一直有一个八爪鱼派在流行,就是不管有没有用,不管有没逻辑,像一只八爪鱼一样丢一大堆指标过来(如下图)

这种做法,张牙舞爪,看着厉害,可是实际上却是项目失败的根源。让做数据的人误以为工作就是做作业,不考虑实际效果,一味贪大求多,最后累得半死还不讨好。

相比之下

★ 多研究业务数据的基本形态

★ 多发现业务对数据实际需求

★ 多测试数据有用的点

★ 剔除无用的,空洞的,高大全的指标

这样才能更快的积累分析经验,让数据更好发挥作用。有兴趣的话,点亮右下角的“在看”,集齐60个,我们看一个从最简单的数据指标出发,逐步驱动业绩升级迭代的例子,敬请期待哦!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-01-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 接地气学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档