Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >数据应用场景之标签管理体系

数据应用场景之标签管理体系

作者头像
知了一笑
发布于 2021-01-12 03:56:37
发布于 2021-01-12 03:56:37
2K15
代码可运行
举报
文章被收录于专栏:知了一笑知了一笑
运行总次数:5
代码可运行

一、标签简介

标签概念

标签,最初用来对实物进行分类和标记,例如标明物品的品名、重量、体积、用途等简要信息。后来逐渐流行到数据行业,用来标记数据,对数据快速分类获取和分析。

标签特点

精确描述定位和搜索,具有生命周期的特性,可以计算,配置和规则化处理。可以用标签来描述各种结构和非结构化[文档、图片、视频等]的数据,从而使这些内容被高效的管理。

  • 描述特征:标签[手机颜色],特征[红色,白色];
  • 描述规则:标签[活跃用户],规则[每日登陆,产生交易];

标签价值

  • 精细运营的基础,有效提高流量精准和效率。
  • 帮助产品快速定位需求数据,进行精准分析;
  • 能帮助客户更快切入到市场周期中;
  • 深入的预测分析数据并作出及时反应;
  • 基于标签的开发智能推荐系统
  • 基于某类下的数据分析,洞察行业特征;

标签的核心价值,或者说最常用的场景:实时智能推荐,精准化数字营销。

二、标签定义

属性标签

属性标签是描述基本特征,不需要行为产生,也不是基于规则引擎分析,例如基于用户实名认证信息,获取:性别,生日,出生日期等特征。变动频率极小,且精准性较高。

行为标签

通过不同业务渠道埋点,捕捉用户的行为数据,基于这些数据分析,形成结果描述的标签,例如:分析用户「网购平台」,得到的结果拼多多,淘宝,京东,天猫等。这些都是需要通过行为数据来判断的标签。

规则标签

规则下分析出来的标签,更多是基于产品或者运营角度来看,例如电商平台需要对会员等级超过5级,且近7天活跃的会员发一次福利,这里就涉及两个标签应用:1.「会员等级」基于什么规则判断;2.「近7天活跃」如何判断,是基于登录,还是产生交易行为,这些都要可以动态配置,然后基于规则引擎把结果生成。基于动态的规则配置,经过计算和分析,生成描述的标签,也就是规则标签。

拟合标签

拟合类标签极具复杂性,通过对多种标签智能组合分析,给出预测描述,或者直接给出进阶定义,例如所谓的读心术,即通过多个特征,眼神信息,判断人的心理活动。在机器学习中有一句话:通过长期对用户行为的判断和学习,机器可能比用户还了解用户。

三、标签管理体系

层级分类

标签管理的基本手段,通常以行业来分:金融,教育,娱乐等;通过多级分类细化管理。

基础标签

即数据的关键标签,特点精确扁平,不可再细分,用来精确的描述数据,类似元数据。当使用多个标签组合描述数据特征,就会形成结构化的表管理。

标签值类型

值类型:数字,字典,布尔,日期,文本框,自定义等,是对标签具体值的管理。例如标签「性别」,标签值「男.女.未知」,这种典型通过罗列字典来描述的场景。

四、标签生产流程

1、基础流程

数据采集

数据采集的渠道相对较多,比如同一APP内的各种业务线:购物、支付、理财、外卖、信息浏览等等。通过数据通道传输到统一的数据聚合平台。有了这些海量日志数据的支撑,才具有数据分析的基础条件。不管是数据智能,深度学习,算法等都是建立在海量数据的基础条件上,这样才能获取具有价值的分析结果。

数据加工

结合如上业务,通过对海量数据的加工,分析和提取,获取相对精准的用户标签,这里还有关键的一步,就是对已有的用户标签进行不断的验证和修复,尤其是规则类和拟合类的相关标签。

标签库

通过标签库,管理复杂的标签结果,除了复杂的标签,和基于时间线的标签变,标签数据到这里,已经具有相当大的价值,可以围绕标签库开放一些收费服务,例如常见的,用户在某电商APP浏览某些商品,可以在某信息流平台看到商品推荐。大数据时代就是这么令人感觉智能和窒息。

标签业务

数据走了一大圈转换成标签,自然还是要回归到业务层面,通过对标签数据的用户的分析,可以进行精准营销,和智能推荐等相关操作,电商应用中可以提高成交量,信息流中可以更好的吸引用户。

应用层

把上述业务开发成服务,集成到具有的应用层面,不断提升应用服务的质量,不断的吸引用户,提供服务。当然用户的数据不断在应用层面产生,在转到数据采集服务中,最终形成完整的闭环流程。

2、数据聚合池

  • 基于IDmapping技术,置换唯一标识[uid];
  • 基于uid关联标签,放入计算池;
  • 相同的uid携带的标签会以贪吃蛇的方式运行;
  • 不断丰富该uid下携带的标签内容;

以此方式丰富标签的场景,产生更大的数据价值;

五、源代码地址

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
GitHub·地址
https://github.com/cicadasmile
GitEE·地址
https://gitee.com/cicadasmile
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-12-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 知了一笑 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
1 条评论
热度
最新
您好,怎么联系您呢 下载代码
您好,怎么联系您呢 下载代码
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
数据分析 | 基于智能标签,精准管理数据
阿里:千人千面,意思不同用户使用阿里相关的产品感觉是不一样的,例如支付宝首页的推荐内容,和其他相关推荐流信息是完全不同的。
知了一笑
2020/06/04
2K0
标签管理体系之业务应用
基于标签对业务进行精准分析,从而影响运营思路和产品迭代的节奏,进而带来非常高的商业价值,但是这里需要对标签的质量进行评估,假设标签的覆盖场景非常低,而且准确度低,同样也会反向影响业务。
知了一笑
2021/01/12
7580
标签管理体系之业务应用
用户画像标签体系——从零开始搭建实时用户画像(三)
​ 用户画像的核心在于给用户“打标签”,每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人,例如年龄、性别、兴趣偏好等,不同的标签通过结构化的数据体系整合,就可与组合出不同的用户画像。
大数据流动
2020/05/29
4.9K0
用户画像标签体系——从零开始搭建实时用户画像(三)
CDP客户数据管理平台体系化搭建
客户数据平台(Customer-Data-Platform),简称CDP;通过采集多方客户数据(主体与线索)等,从而进行精准的客户分析和人群细分,进而实现高效的客户维系和发掘以及日常营销运营。
知了一笑
2021/11/12
1.4K0
CDP客户数据管理平台体系化搭建
用户标签&营销体系的客户数据平台(CDP)建设
CDP(Customer Data Platform,客户数据平台)是由营销人管理的客户数据库,将来自不同渠道、不同场景的实时和非实时的客户数据进行采集、整合、分析和应用,以实现客户建模、设计营销活动、提升营销效率和优化客户体验的目标,从而促进企业业绩及利润的增长。接下来跟大家聊聊为什么需要建设 CDP;我们应该怎么去建设 CDP;最后是建设 CDP 我们需要做什么。
王知无-import_bigdata
2021/07/30
4.8K0
用户画像超全总结:3种标签类型、8大系统模块
导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。企业内保存了大量的原始数据和各种业务数据,这是企业经营活动的真实记录,如何更加有效地利用这些数据进行分析和评估,成为企业基于更大数据量背景的问题所在。
朱小五
2021/12/09
4K0
用户画像超全总结:3种标签类型、8大系统模块
标签体系下的用户画像建设小指南
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。
王知无-import_bigdata
2021/07/12
4.8K0
标签体系下的用户画像建设小指南
用户画像标签体系包括哪些维度?有哪些应用场景?(附完整导图)
互联网相关企业在建立用户画像时一般除了基于用户维度(userid)建立一套用户标签体系外,还会基于用户使用设备维度(cookieid)建立相应的标签体系。
IT阅读排行榜
2020/04/10
14.5K0
用户画像标签体系包括哪些维度?有哪些应用场景?(附完整导图)
【用户画像】从0到1掌握用户画像知识体系
随着用户的一切行为数据可以被企业追踪到,企业的关注点日益聚焦在如何利用大数据为经营分析和精准营销服务,而要做精细化运营,首先要建立本企业的用户画像。
全栈程序员站长
2022/09/01
2.5K0
【用户画像】从0到1掌握用户画像知识体系
数据分析与挖掘的流程和方法
数据分析与挖掘是对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,整个分析过程会有以下几个步骤: 1. 确定目标 首先,要明确目标是什么?比如一个消费品公司有千万级别的会员,那如何对会员的有一个清晰的认识。哪些是活跃的会员?哪些已经流失?会员的消费周期是什么样子?不同的会员偏好的产品特征是什么?流失的会员有没有什么办法唤醒回头再次? 通过问问题,确定分析目标,明确大目标,拆解成各个小目标。 以上面的例子,其实是想做关于做会员画像,实现精准营销,这个是大目标。活跃会
企鹅号小编
2018/02/07
2.7K0
数据分析与挖掘的流程和方法
大数据应用场景:除了“杀熟”,还能干点啥?
五一回家,有非数据专业的朋友问,你一直搞大数据,大数据除了“杀熟”,还有什么应用场景啊,能不能科普下?的确网络上、新闻上看到了很多的“杀熟”的负面报道,但大数据还能干点啥,有什么价值,数据人每天在忙啥,对于非数据线的人可能确实不了解,毕竟隔行如隔山。所以,近期也在思考,如何能把大数据的应用场景说清楚,不为正名,只为把自己数年的大数据从业的初心再捋一捋,也给想要选择数据行业的提供一些参考建议。
数据干饭人
2022/07/01
4240
大数据应用场景:除了“杀熟”,还能干点啥?
用户画像从入门到挖坑
背景 用户流量从搜索引擎为入口的增量时代到移动互联网普及人口红利不再的存量时代,这个变化对每个公司的获客成本,运营思路都产生了很大的影响,在流量日益枯竭,获客成本越来越高的时代,伴随着大数据、精细化运营、人工智能、机器学习等一大波新技术和概念的崛起、普及,它们之间有何关联?如今互联网产品又该如何运营、攻城略地?本文介绍的用户画像或许能带来一点思路。 1、用户画像的作用与意义 1.1 作用 用户画像承载了两个业务目标:一是如何准确的了解现有用户;二是如何在茫茫人海中通过广告营销获取类似画像特征的新用户。比如在
用户1177713
2018/02/24
4.2K0
用户画像从入门到挖坑
用户画像分析与场景应用
用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。用户画像最初是在电商领域得到应用的,尤其在数字化营销范畴之内,核心的依赖依据就是描述用户画像的丰富标签。
知了一笑
2021/01/25
2K0
深入了解:标签体系——企业运营中不可或缺的一环
而运营的精准化需要海量数据来支撑,重中之重是建设一个适合自身的 CDP,并且用好它。
努力的阿飞
2024/01/19
3720
一篇文章详解大数据技术和应用场景
说起大数据,估计大家都觉得只听过概念,但是具体是什么东西,怎么定义,没有一个标准的东西,因为在我们的印象中好像很多公司都叫大数据公司,业务形态则有几百种,感觉不是很好理解,所以我建议还是从字面上来理解大数据,在维克托迈尔-舍恩伯格及肯尼斯库克耶编写的《大数据时代》提到了大数据的4个特征:
民工哥
2020/09/16
10.3K0
聊聊运营活动的设计与实现逻辑
在多数的产品功能体系中,都会设计活动板块,活动作为运营的手段,根本目的是为了更好的连接产品和用户,所以很考验运营方案的策划,在活动的生命周期内完成对业务指标的达成,比如新用户流量,老用户唤醒等;
知了一笑
2022/11/30
5770
聊聊运营活动的设计与实现逻辑
标签 VS 数据指标,一文搞懂概念与区别
标签由互联网领域逐步推广到其他领域,打标签的对象也由用户、产品等扩展到渠道、营销活动等。
肉眼品世界
2023/02/12
2.7K0
标签 VS 数据指标,一文搞懂概念与区别
金融大数据:三大应用场景提升营销收益
本文介绍了金融大数据在金融风控、精准营销和增值业务中的应用,并探讨了金融大数据平台的发展趋势。
腾讯云商业智能分析团队
2017/08/25
2.5K0
金融大数据:三大应用场景提升营销收益
业务场景下数据采集机制和策略
做面向C端用户的产品,十分依赖用户数据的收集,下面都见过这样一张数据分析图,通过链路上各个环节的数据采集,分析对比出曝光产品的交易量:
知了一笑
2020/12/28
1.2K0
业务场景下数据采集机制和策略
大数据Flink进阶(四):Flink应用场景以及其他实时计算框架对比
在实际生产的过程中,大量数据在不断地产生,例如金融交易数据、互联网订单数据、GPS定位数 据、传感器信号、移动终端产生的数据、通信信号数据等,以及我们熟悉的网络流量监控、服务器产生的日志数据,这些数据最大的共同点就是实时从不同的数据源中产生,然后再传输到下游的分析系统。针对这些数据类型主要包括实时智能推荐、复杂事件处理、实时欺诈检测、实时数仓与ETL类型、流数据分析类型、实时报表类型等实时业务场景,而Flink对于这些类型的场景都有着非常好的支持。
Lansonli
2023/03/18
3.7K0
大数据Flink进阶(四):Flink应用场景以及其他实时计算框架对比
推荐阅读
相关推荐
数据分析 | 基于智能标签,精准管理数据
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验