参考链接: Python中的numpy.logical_or
本文整理汇总了Python中multiprocessing.cpu_count方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.cpu_count方法的具体用法?Python multiprocessing.cpu_count怎么用?Python multiprocessing.cpu_count使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块multiprocessing的用法示例。
在下文中一共展示了multiprocessing.cpu_count方法的30个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_graph_stats
点赞 7
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def get_graph_stats(graph_obj_handle, prop='degrees'):
# if prop == 'degrees':
num_cores = multiprocessing.cpu_count()
inputs = [int(i*len(graph_obj_handle)/num_cores) for i in range(num_cores)] + [len(graph_obj_handle)]
res = Parallel(n_jobs=num_cores)(delayed(get_values)(graph_obj_handle, inputs[i], inputs[i+1], prop) for i in range(num_cores))
stat_dict = {}
if 'degrees' in prop:
stat_dict['degrees'] = list(set([d for core_res in res for file_res in core_res for d in file_res['degrees']]))
if 'edge_labels' in prop:
stat_dict['edge_labels'] = list(set([d for core_res in res for file_res in core_res for d in file_res['edge_labels']]))
if 'target_mean' in prop or 'target_std' in prop:
param = np.array([file_res['params'] for core_res in res for file_res in core_res])
if 'target_mean' in prop:
stat_dict['target_mean'] = np.mean(param, axis=0)
if 'target_std' in prop:
stat_dict['target_std'] = np.std(param, axis=0)
return stat_dict
开发者ID:priba,项目名称:nmp_qc,代码行数:22,
示例2: get_cpuusage
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def get_cpuusage(filename,field_values,which_dict):
cpuusage_file = open(os.path.join(homepath,datadir,filename))
lines = cpuusage_file.read().split("\n")
cpu_dict={}
cpu_count = multiprocessing.cpu_count()
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
cpu_dict[cpucore] = {}
for eachline in lines:
tokens_split = eachline.split("=")
if(len(tokens_split) == 1):
continue
cpucoresplit = tokens_split[0].split("$")
cpu_dict[cpucoresplit[0]][cpucoresplit[1]] = float(tokens_split[1])
totalresult = 0
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
which_dict["cpu_usage"] = cpu_dict
Total = cpu_dict[cpucore]["user"] + cpu_dict[cpucore]["nice"] + cpu_dict[cpucore]["system"] + cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"] + cpu_dict[cpucore]["irq"] + cpu_dict[cpucore]["softirq"]
idle = cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"]
field_values[0] = "CPU"
result = 1 - round(float(idle/Total),4)
totalresult += float(result)
field_values.append(totalresult*100)
开发者ID:insightfinder,项目名称:InsightAgent,代码行数:26,
示例3: train
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def train(env_id, num_timesteps, seed, policy):
ncpu = multiprocessing.cpu_count()
if sys.platform == 'darwin': ncpu //= 2
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
config.gpu_options.allow_growth = True #pylint: disable=E1101
tf.Session(config=config).__enter__()
env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
ent_coef=.01,
lr=lambda f : f * 2.5e-4,
cliprange=lambda f : f * 0.1,
total_timesteps=int(num_timesteps * 1.1))
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:20,
示例4: scrape_recipe_box
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def scrape_recipe_box(scraper, site_str, page_iter, status_interval=50):
if args.append:
recipes = quick_load(site_str)
else:
recipes = {}
start = time.time()
if args.multi:
pool = Pool(cpu_count() * 2)
results = pool.map(scraper, page_iter)
for r in results:
recipes.update(r)
else:
for i in page_iter:
recipes.update(scraper(i))
if i % status_interval == 0:
print('Scraping page {} of {}'.format(i, max(page_iter)))
quick_save(site_str, recipes)
time.sleep(args.sleep)
print('Scraped {} recipes from {} in {:.0f} minutes'.format(
len(recipes), site_str, (time.time() - start) / 60))
quick_save(site_str, recipes)
开发者ID:rtlee9,项目名称:recipe-box,代码行数:25,
示例5: test_multiprocessing
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def test_multiprocessing(app):
"""Tests that the number of children we produce is correct"""
# Selects a number at random so we can spot check
num_workers = random.choice(range(2, multiprocessing.cpu_count() * 2 + 1))
process_list = set()
def stop_on_alarm(*args):
for process in multiprocessing.active_children():
process_list.add(process.pid)
process.terminate()
signal.signal(signal.SIGALRM, stop_on_alarm)
signal.alarm(3)
app.run(HOST, PORT, workers=num_workers)
assert len(process_list) == num_workers
开发者ID:huge-success,项目名称:sanic,代码行数:18,
示例6: test_multiprocessing_with_blueprint
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def test_multiprocessing_with_blueprint(app):
# Selects a number at random so we can spot check
num_workers = random.choice(range(2, multiprocessing.cpu_count() * 2 + 1))
process_list = set()
def stop_on_alarm(*args):
for process in multiprocessing.active_children():
process_list.add(process.pid)
process.terminate()
signal.signal(signal.SIGALRM, stop_on_alarm)
signal.alarm(3)
bp = Blueprint("test_text")
app.blueprint(bp)
app.run(HOST, PORT, workers=num_workers)
assert len(process_list) == num_workers
# this function must be outside a test function so that it can be
# able to be pickled (local functions cannot be pickled).
开发者ID:huge-success,项目名称:sanic,代码行数:24,
示例7: load_config
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def load_config(config_data):
config_data['pywren']['runtime'] = RUNTIME_NAME_DEFAULT
config_data['pywren']['runtime_memory'] = None
if 'runtime_timeout' not in config_data['pywren']:
config_data['pywren']['runtime_timeout'] = RUNTIME_TIMEOUT_DEFAULT
if 'storage_backend' not in config_data['pywren']:
config_data['pywren']['storage_backend'] = 'localhost'
if 'localhost' not in config_data:
config_data['localhost'] = {}
if 'ibm_cos' in config_data and 'private_endpoint' in config_data['ibm_cos']:
del config_data['ibm_cos']['private_endpoint']
if 'workers' in config_data['pywren']:
config_data['localhost']['workers'] = config_data['pywren']['workers']
else:
total_cores = multiprocessing.cpu_count()
config_data['pywren']['workers'] = total_cores
config_data['localhost']['workers'] = total_cores
开发者ID:pywren,项目名称:pywren-ibm-cloud,代码行数:23,
示例8: get_params_for_mp
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def get_params_for_mp(n_triples):
n_cores = mp.cpu_count()
pool = mp.Pool(n_cores)
avg = n_triples // n_cores
range_list = []
start = 0
for i in range(n_cores):
num = avg + 1 if i < n_triples - avg * n_cores else avg
range_list.append([start, start + num])
start += num
return n_cores, pool, range_list
# input: [(h1, {t1, t2 ...}), (h2, {t3 ...}), ...]
# output: {(h1, t1): paths, (h1, t2): paths, (h2, t3): paths, ...}
开发者ID:hwwang55,项目名称:PathCon,代码行数:19,
示例9: cpu_count
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def cpu_count():
"""Return the number of CPU cores."""
try:
return multiprocessing.cpu_count()
# TODO: remove except clause once we support only python >= 2.6
except NameError:
## This code part is taken from parallel python.
# Linux, Unix and MacOS
if hasattr(os, "sysconf"):
if "SC_NPROCESSORS_ONLN" in os.sysconf_names:
# Linux & Unix
n_cpus = os.sysconf("SC_NPROCESSORS_ONLN")
if isinstance(n_cpus, int) and n_cpus > 0:
return n_cpus
else:
# OSX
return int(os.popen2("sysctl -n hw.ncpu")[1].read())
# Windows
if "NUMBER_OF_PROCESSORS" in os.environ:
n_cpus = int(os.environ["NUMBER_OF_PROCESSORS"])
if n_cpus > 0:
return n_cpus
# Default
return 1
开发者ID:ME-ICA,项目名称:me-ica,代码行数:26,
示例10: create_parser
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def create_parser():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--delimiter')
parser.add_argument('--embedding-size', default=200, type=int)
parser.add_argument('--graph-path')
parser.add_argument('--has-header', action='store_true')
parser.add_argument('--input', '-i', dest='infile', required=True)
parser.add_argument('--log-level', '-l', type=str.upper, default='INFO')
parser.add_argument('--num-walks', default=1, type=int)
parser.add_argument('--model', '-m', dest='model_path')
parser.add_argument('--output', '-o', dest='outfile', required=True)
parser.add_argument('--stats', action='store_true')
parser.add_argument('--undirected', action='store_true')
parser.add_argument('--walk-length', default=10, type=int)
parser.add_argument('--window-size', default=5, type=int)
parser.add_argument('--workers', default=multiprocessing.cpu_count(),
type=int)
return parser
开发者ID:jwplayer,项目名称:jwalk,代码行数:22,
示例11: load_settings
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def load_settings():
with open('SETTINGS.json') as f:
settings = json.load(f)
data_dir = str(settings['competition-data-dir'])
cache_dir = str(settings['data-cache-dir'])
submission_dir = str(settings['submission-dir'])
N_jobs = str(settings['num-jobs'])
N_jobs = multiprocessing.cpu_count() if N_jobs == 'auto' else int(N_jobs)
for d in (cache_dir, submission_dir):
try:
os.makedirs(d)
except:
pass
return Settings(data_dir=data_dir, cache_dir=cache_dir, submission_dir=submission_dir, N_jobs=N_jobs)
开发者ID:MichaelHills,项目名称:seizure-prediction,代码行数:19,
示例12: train_reader
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def train_reader(train_list_path):
def reader():
with open(train_list_path, 'r') as f:
lines = f.readlines()
# 打乱数据
np.random.shuffle(lines)
# 开始获取每张图像和标签
for line in lines:
data, label = line.split('\t')
yield data, label
return paddle.reader.xmap_readers(train_mapper, reader, cpu_count(), 1024)
# 测试数据的预处理
开发者ID:yeyupiaoling,项目名称:LearnPaddle2,代码行数:18,
示例13: train_reader
点赞 6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def train_reader(train_list_path, crop_size, resize_size):
father_path = os.path.dirname(train_list_path)
def reader():
with open(train_list_path, 'r') as f:
lines = f.readlines()
# 打乱图像列表
np.random.shuffle(lines)
# 开始获取每张图像和标签
for line in lines:
img, label = line.split('\t')
img = os.path.join(father_path, img)
yield img, label, crop_size, resize_size
return paddle.reader.xmap_readers(train_mapper, reader, cpu_count(), 102400)
# 测试图片的预处理
开发者ID:yeyupiaoling,项目名称:LearnPaddle2,代码行数:20,
示例14: cpu_count_physical
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def cpu_count_physical():
"""
tries to get the number of physical (ie not virtual) cores
"""
try:
import psutil
return psutil.cpu_count(logical=False)
except:
import multiprocessing
return multiprocessing.cpu_count()
开发者ID:svviz,项目名称:svviz,代码行数:12,
示例15: _n_workers_for_local_cluster
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def _n_workers_for_local_cluster(calcs):
"""The number of workers used in a LocalCluster
An upper bound is set at the cpu_count or the number of calcs submitted,
depending on which is smaller. This is to prevent more workers from
being started than needed (but also to prevent too many workers from
being started in the case that a large number of calcs are submitted).
"""
return min(cpu_count(), len(calcs))
开发者ID:spencerahill,项目名称:aospy,代码行数:11,
示例16: test_n_workers_for_local_cluster
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def test_n_workers_for_local_cluster(calcsuite_init_specs_two_calcs):
calcs = CalcSuite(calcsuite_init_specs_two_calcs).create_calcs()
expected = min(cpu_count(), len(calcs))
result = _n_workers_for_local_cluster(calcs)
assert result == expected
开发者ID:spencerahill,项目名称:aospy,代码行数:7,
示例17: cpu_count
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def cpu_count():
"""Return the cpu count."""
try:
import multiprocessing
count = multiprocessing.cpu_count()
except Exception:
print("Using fallback CPU count", file=sys.stderr)
count = 4
return count
开发者ID:ContinuumIO,项目名称:ciocheck,代码行数:11,
示例18: parse_args
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def parse_args():
"""Parses command line arguments."""
parser = argparse.ArgumentParser(
description='Tool to download dataset images.')
parser.add_argument('--input_file', required=True,
help='Location of dataset.csv')
parser.add_argument('--output_dir', required=True,
help='Output path to download images')
parser.add_argument('--threads', default=multiprocessing.cpu_count() + 1,
help='Number of threads to use')
args = parser.parse_args()
return args.input_file, args.output_dir, int(args.threads)
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:14,
示例19: __init__
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def __init__(self, max_processes=mp.cpu_count()):
"""
Execute several functions (threads, processes) in parallel until return values called.
@param max_processes: maximum number of tasks that will be run in parallel at the same time
"""
assert isinstance(max_processes, int)
# prevent overwrite of previous settings
if AsyncParallel.pool is not None:
return
AsyncParallel.pool = mp.Pool(processes=max_processes)
AsyncParallel.max_processes = max_processes
开发者ID:CAMI-challenge,项目名称:CAMISIM,代码行数:14,
示例20: runThreadParallel
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def runThreadParallel(threadTaskList, maxThreads=mp.cpu_count()):
"""
Execute several functions (threads, processes) in parallel.
@type threadTaskList: list of TaskThread
@param maxThreads: maximum number of tasks that will be run in parallel at the same time
@return: a list of respective return values
"""
assert isinstance(threadTaskList, list)
assert isinstance(maxThreads, int)
# creates a pool of workers, add all tasks to the pool
pool = mp.Pool(processes=maxThreads)
taskHandlerList = []
for task in threadTaskList:
assert isinstance(task, TaskThread)
taskHandlerList.append(pool.apply_async(task.fun, task.args))
# finish all tasks
pool.close()
pool.join()
# retrieve the return values
retValList = []
for taskHandler in taskHandlerList:
taskHandler.wait()
# assert taskHandler.successful()
retValList.append(taskHandler.get())
return retValList
开发者ID:CAMI-challenge,项目名称:CAMISIM,代码行数:32,
示例21: runCmdParallel
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def runCmdParallel(cmdTaskList, maxProc=mp.cpu_count(), stdInErrLock=mp.Manager().Lock()):
"""
Run several command line commands in parallel.
@attention: use the Manager to get the lock as in this function definition !!!
@param cmdTaskList: list of command line tasks
@type cmdTaskList: list of TaskCmd
@param maxProc: maximum number of tasks that will be run in parallel at the same time
@param stdInErrLock: acquiring the lock enables writing to the stdout and stderr
@return: list of failed commands, dictionary (cmd, task process)
"""
assert isinstance(cmdTaskList, list)
assert isinstance(maxProc, int)
threadTaskList = []
for cmdTask in cmdTaskList:
assert isinstance(cmdTask, TaskCmd)
threadTaskList.append(TaskThread(_runCmd, (cmdTask, stdInErrLock)))
returnValueList = runThreadParallel(threadTaskList, maxProc)
failList = []
for process, task in returnValueList:
if process.returncode != 0:
failList.append(dict(process=process, task=task))
if len(failList) > 0:
return failList
else:
return None
开发者ID:CAMI-challenge,项目名称:CAMISIM,代码行数:34,
示例22: __set_runtime_ncores
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def __set_runtime_ncores(self, ncores):
if ncores is None:
ncores = INT_TYPE(1)
else:
assert is_integer(ncores), LOGGER.error("ncores must be an integer")
ncores = INT_TYPE(ncores)
assert ncores>0, LOGGER.error("ncores must be > 0")
if ncores > multiprocessing.cpu_count():
LOGGER.warn("ncores '%s' is reset to %s which is the number of available cores on your machine"%(ncores, multiprocessing.cpu_count()))
ncores = INT_TYPE(multiprocessing.cpu_count())
self._runtime_ncores = ncores
开发者ID:bachiraoun,项目名称:fullrmc,代码行数:13,
示例23: sample_normalize
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def sample_normalize(self, k_samples=1000, overwrite=False):
""" Estimate the mean and std of the features from the training set
Params:
k_samples (int): Use this number of samples for estimation
"""
log = LogUtil().getlogger()
log.info("Calculating mean and std from samples")
# if k_samples is negative then it goes through total dataset
if k_samples < 0:
audio_paths = self.audio_paths
# using sample
else:
k_samples = min(k_samples, len(self.train_audio_paths))
samples = self.rng.sample(self.train_audio_paths, k_samples)
audio_paths = samples
manager = Manager()
return_dict = manager.dict()
jobs = []
for threadIndex in range(cpu_count()):
proc = Process(target=self.preprocess_sample_normalize, args=(threadIndex, audio_paths, overwrite, return_dict))
jobs.append(proc)
proc.start()
for proc in jobs:
proc.join()
feat = np.sum(np.vstack([item['feat'] for item in return_dict.values()]), axis=0)
count = sum([item['count'] for item in return_dict.values()])
feat_squared = np.sum(np.vstack([item['feat_squared'] for item in return_dict.values()]), axis=0)
self.feats_mean = feat / float(count)
self.feats_std = np.sqrt(feat_squared / float(count) - np.square(self.feats_mean))
np.savetxt(
generate_file_path(self.save_dir, self.model_name, 'feats_mean'), self.feats_mean)
np.savetxt(
generate_file_path(self.save_dir, self.model_name, 'feats_std'), self.feats_std)
log.info("End calculating mean and std from samples")
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:39,
示例24: scan
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def scan(urls):
"""scan multiple websites with multi processing"""
vulnerables = []
results = {} # store scanned results
childs = [] # store child processes
max_processes = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(max_processes, init)
for url in urls:
def callback(result, url=url):
results[url] = result
childs.append(pool.apply_async(__sqli, (url, ), callback=callback))
try:
while True:
time.sleep(0.5)
if all([child.ready() for child in childs]):
break
except KeyboardInterrupt:
std.stderr("stopping sqli scanning process")
pool.terminate()
pool.join()
else:
pool.close()
pool.join()
for url, result in results.items():
if result[0] == True:
vulnerables.append((url, result[1]))
return vulnerables
开发者ID:the-robot,项目名称:sqliv,代码行数:35,
示例25: check
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def check(urls):
"""get many domains' server info with multi processing"""
domains_info = [] # return in list for termtable input
results = {} # store results
childs = [] # store child processes
max_processes = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(max_processes, init)
for url in urls:
def callback(result, url=url):
results[url] = result
childs.append(pool.apply_async(__getserverinfo, (url, ), callback=callback))
try:
while True:
time.sleep(0.5)
if all([child.ready() for child in childs]):
break
except KeyboardInterrupt:
std.stderr("skipping server info scanning process")
pool.terminate()
pool.join()
else:
pool.close()
pool.join()
# if user skipped the process, some may not have information
# so put - for empty data
for url in urls:
if url in results.keys():
data = results.get(url)
domains_info.append([url, data[0], data[1]])
continue
domains_info.append([url, '', ''])
return domains_info
开发者ID:the-robot,项目名称:sqliv,代码行数:41,
示例26: _get_trial_result_list
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def _get_trial_result_list(self, param_sweep: Iterable[OptimizationParams],
identifiers: Optional[Iterable[Hashable]],
reevaluate_final_params: bool, save_x_vals: bool,
seeds: Optional[Sequence[int]],
num_processes: Optional[int]
) -> List[OptimizationTrialResult]:
if num_processes is None:
# coverage: ignore
num_processes = multiprocessing.cpu_count()
pool = multiprocessing.Pool(num_processes)
try:
arg_tuples = ((self.ansatz, self.objective,
self._preparation_circuit, self.initial_state,
optimization_params, reevaluate_final_params,
save_x_vals, seeds[0] if seeds is not None else
numpy.random.randint(2**16),
self.ansatz.default_initial_params(),
self._black_box_type)
for optimization_params in param_sweep)
result_list = pool.map(_run_optimization, arg_tuples)
trial_results = [
OptimizationTrialResult([result], optimization_params)
for optimization_params, result in zip(param_sweep, result_list)
]
finally:
pool.terminate()
return trial_results
开发者ID:quantumlib,项目名称:OpenFermion-Cirq,代码行数:31,
示例27: _get_result_list
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def _get_result_list(self,
optimization_params,
reevaluate_final_params: bool,
save_x_vals: bool,
repetitions: int = 1,
seeds: Optional[Sequence[int]] = None,
use_multiprocessing: bool = False,
num_processes: Optional[int] = None
) -> List[OptimizationResult]:
if use_multiprocessing:
if num_processes is None:
num_processes = multiprocessing.cpu_count()
pool = multiprocessing.Pool(num_processes)
try:
arg_tuples = ((self.ansatz, self.objective,
self._preparation_circuit, self.initial_state,
optimization_params, reevaluate_final_params,
save_x_vals, seeds[i] if seeds is not None else
numpy.random.randint(2**16),
self.ansatz.default_initial_params(),
self._black_box_type)
for i in range(repetitions))
result_list = pool.map(_run_optimization, arg_tuples)
finally:
pool.terminate()
else:
result_list = []
for i in range(repetitions):
result = _run_optimization(
(self.ansatz, self.objective, self._preparation_circuit,
self.initial_state, optimization_params,
reevaluate_final_params, save_x_vals, seeds[i]
if seeds is not None else numpy.random.randint(2**16),
self.ansatz.default_initial_params(),
self._black_box_type))
result_list.append(result)
return result_list
开发者ID:quantumlib,项目名称:OpenFermion-Cirq,代码行数:41,
示例28: get_cpuusage
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def get_cpuusage(filename,field_values,which_dict):
cpuusage_file = open(os.path.join(homepath,datadir,filename))
lines = cpuusage_file.read().split("\n")
cpu_dict={}
if len(lines) == 1:
return
cpu_count = multiprocessing.cpu_count()
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
cpu_dict[cpucore] = {}
for eachline in lines:
tokens_split = eachline.split("=")
if(len(tokens_split) == 1):
continue
cpucoresplit = tokens_split[0].split("$")
cpu_dict[cpucoresplit[0]][cpucoresplit[1]] = float(tokens_split[1])
totalresult = 0
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
which_dict["cpu_usage"] = cpu_dict
Total = cpu_dict[cpucore]["user"] + cpu_dict[cpucore]["nice"] + cpu_dict[cpucore]["system"] + cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"] + cpu_dict[cpucore]["irq"] + cpu_dict[cpucore]["softirq"]
idle = cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"]
field_values[0] = "CPU"
result = 1 - round(float(idle/Total),4)
totalresult += float(result)
field_values.append(totalresult*100)
开发者ID:insightfinder,项目名称:InsightAgent,代码行数:28,
示例29: make_session
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def make_session(num_cpu=None, make_default=False):
"""Returns a session that will use CPU's only"""
if num_cpu is None:
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
tf_config.gpu_options.allocator_type = 'BFC'
tf_config.gpu_options.allow_growth = True
if make_default:
return tf.InteractiveSession(config=tf_config)
else:
return tf.Session(config=tf_config)
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:15,
示例30: _check_njobs
点赞 5
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import cpu_count [as 别名]
def _check_njobs(njobs):
if njobs < 1:
njobs = multiprocessing.cpu_count()
if njobs is None:
return 1
assert isinstance(njobs, int)
assert njobs >= 1
return njobs
开发者ID:david-cortes,项目名称:contextualbandits,代码行数:10,
注:本文中的multiprocessing.cpu_count方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。