前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >学习资源 | NOAA+AI(十八)—在地球科学中使用PyTorch进行深度学习

学习资源 | NOAA+AI(十八)—在地球科学中使用PyTorch进行深度学习

作者头像
郭好奇同学
发布2020-12-09 14:42:07
5300
发布2020-12-09 14:42:07
举报
文章被收录于专栏:好奇心Log

背景动机

AI,机器学习/深度学习技术(包括深层神经网络,DNN)在许多领域和应用中取得了很大的进展,包括医药、自动驾驶、社交媒体、金融工业等。在私有领域,人工智能的准确性和可用性方面的惊人增长具有显著意义。人工智能在气象学和海洋学领域也取得了显著的进展。然而,直到最近,在环境科学领域只有很少的AI应用开发工作。 令人鼓舞的是,AI在这些领域的应用在不断增加,而且取得了令人鼓舞的结果,其中包括预测技能。随着卫星数据的不断增加以及社会依赖的增加,将会持续改善预报准确率和精度。来自高分辨率卫星和传感器,一系列新传感器,以及物联网背景下新观测设备的数据不断增加。这些数据的增加将给这些数据的应用带来极大的挑战,AI已经成为潜在的解决技术。

主要内容

使用PyTorch为地球系统科学进行深度学习的实用介绍。

资源获取

希望本期内容值得你点一个“在看”,欢迎分享,欢迎三连。 第十八期更多详细资料获取方式:好奇心Log公众号后台回复NOAA18

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-12-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 好奇心Log 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 背景动机
  • 主要内容
  • 资源获取
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档