首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >VGGnet简介

VGGnet简介

作者头像
生信编程日常
发布于 2020-12-07 02:00:43
发布于 2020-12-07 02:00:43
9140
举报

VGGnet是由牛津大学和DeepMind研发的深度学习网络。它是由Alexnet发展而来的,其结构如下图所示:

其中, VGG16包含了16个隐藏层(13个卷积层+3个全连接层),如图中的D列所示; VGG19包含了19个隐藏层(16个卷积层+3个全连接层),如图中的E列所示。

VGGnet相比于Alex-net而言,具有更小的卷积核,都是3x3的,而Alex-net卷积核较大(11x11,7x7,5x5)。并且相比于AlexNet的3x3的池化核,VGG全部为2x2的池化核。

但是VGG耗费更多计算资源,并且使用了更多的参数。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
深度学习之VGG19模型简介
该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。
李小白是一只喵
2020/04/24
6K0
深度学习之VGG19模型简介
【AI前沿】深度学习基础:卷积神经网络(CNN)
卷积神经网络的基本结构由卷积层(Convolutional Layer)、池化层(Pooling Layer)、全连接层(Fully Connected Layer)以及激活函数(Activation Function)组成。
屿小夏
2024/07/13
4.9K0
深度学习系列(二)卷积神经网络模型(从LeNet-5到Inception V4)
卷积神经网络上目前深度学习应用在图像处理和自然语言处理的非常具有代表性的神经网络,其经历了不断的优化发展,性能越来越强。在图像处理、计算机视觉领域的应用包括图像特征提取、目标分类、目标分割、目标识别等。相比于传统的神经网络需要将一定的特征信息作为输入,卷积神经网络可以直接将原始图像或经过预处理之后的图像作为网络模型的输入,一个卷积神经网络通常包括输入输出层和多个隐藏层,隐藏层通常包括卷积层和RELU层(即激活函数)、池化层、全连接层和归一化层等。卷积神经网络中有三个基本的概念:局部感受野(Local Receptive Fields)、共享权值(Shared Weights)、池化(Pooling)。 (1)局部感受野。对于全连接式的神经网络,图像的每一个像素点连接到全连接的每一个神经元中,造成大量的计算量,而卷积神经网络则是把每一个卷积核的点只连接到图像的某个局部区域,从而减少参数量。 (2)共享权值。在卷积神经网络的卷积层中,神经元对应的权值是相同的,由于权值相同,因此可以减少训练的参数量。 (3)池化。类似于人的视觉观察物体原理,关注点由大到小,首先输入图像往往都比较大,在卷积过程中通过不断提取特征,并且经过池化操作来对图像进行缩小,同时提取低阶和高阶的抽象特征信息。 卷机的原理和各种卷积的变种在之前的文章里提过。(深度学习系列(一)常见的卷积类型)
Minerva
2020/05/21
1.2K0
从LeNet到GoogLeNet:逐层详解,看卷积神经网络的进化
深度学习的兴起使卷积神经网络在计算机视觉方面大放异彩,本文将按时间和创新点顺序介绍一系列网络结构:LeNet、AlexNet、VGGNet、InceptionNet 与 ResNet。
AI算法与图像处理
2020/02/12
3.9K0
从LeNet到GoogLeNet:逐层详解,看卷积神经网络的进化
深度学习经典网络解析:5.VGG
  VGGNet是在ImageNet Challenge 2014在定位和分类过程中分别获得了第一名和第二名的神经网络架构。VGGNet是牛津大学计算机视觉组和DeepMind公司的研究员一起研发的深度卷积神经网络。VGG主要探究了卷积神经网络的深度和其性能之间的关系,通过反复堆叠3×3的小卷积核和2×2的最大池化层,VGGNet成功的搭建了16-19层的深度卷积神经网络。与之前的网络结构相比,错误率大幅度下降;同时,VGG的泛化能力非常好,在不同的图片数据集上都有良好的表现。到目前为止,VGG依然经常被用来提取特征图像。自从2012年AlexNet在ImageNet Challenge大获成功之后,深度学习在人工智能领域再次火热起来,很多模型在此基础上做了大量尝试和改进。主要有两个方向:
AiCharm
2023/05/15
1.5K0
深度学习经典网络解析:5.VGG
拆解VGGNet网络模型在分类和定位任务上的能力
下面我们将对2014年夺得ImageNet的定位第一和分类第二的VGG网络进行分析,在此过程中更多的是对这篇经典文章的感性分析,希望和大家共同交流产生共鸣,如果有理解不到位的也真诚期待指出错误。
人工智能的秘密
2018/01/09
2.3K0
【卷积神经网络结构专题】经典网络结构之VGG(附代码实现)
VGG 最大的特点就是它在之前的网络模型上,通过比较彻底地采用 3x3 尺寸的卷积核来堆叠神经网络,从而加深整个神经网络的层级。并且VGG论文给出了一个非常振奋人心的结论:卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用。
深度学习技术前沿公众号博主
2020/06/04
2.3K0
VGG论文笔记/小结
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/81674099
bear_fish
2018/09/14
1.1K0
VGG论文笔记/小结
从AlexNet到残差网络,理解卷积神经网络的不同架构
该文介绍了神经网络模型压缩、加速和量化三个方面的研究进展。其中,压缩技术包括模型剪枝、知识蒸馏等方法,加速技术包括硬件加速、优化算法等方法,量化技术包括量化训练、量化推理等方法。这些技术在不同程度上减小了模型的大小、提高了推理的速度、降低了训练的能耗。
企鹅号小编
2018/01/04
1K0
从AlexNet到残差网络,理解卷积神经网络的不同架构
一文读懂最近流行的CNN架构(附学习资料)
来源: 机器学习算法全栈工程师 本文长度为4259字,建议阅读6分钟 本文为你介绍CNN架构,包括ResNet, AlexNet, VGG, Inception。 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权。 http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inceptio
数据派THU
2018/01/26
2.6K0
ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构
作者:叶 虎 编辑:王抒伟 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/ 原作者保留版权。 卷积神经网络(CNN)在视觉识别任务上的表现令人称奇。好的CNN网络是带有上百万参数和许多隐含层的“庞然怪物”。事实上,一个
机器学习算法工程师
2018/03/06
2.7K0
ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构
深度学习: VGGNet 网络
VGGNet 于2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出,斩获该年ImageNet竞赛中 Localization Task (定位任务) 第一名 和 Classification Task (分类任务) 第二名。
JNingWei
2018/09/27
2.2K0
深度学习: VGGNet 网络
【深度学习】经典神经网络 VGG 论文解读
VGG 在深度学习领域中非常有名,很多人 fine-tune 的时候都是下载 VGG 的预训练过的权重模型,然后在次基础上进行迁移学习。VGG 是 ImageNet 2014 年目标定位竞赛的第一名,图像分类竞赛的第二名,需要注意的是,图像分类竞赛的第一名是大名鼎鼎的 GoogLeNet,那么为什么人们更愿意使用第二名的 VGG 呢?
Frank909
2019/01/14
1.7K0
VGG的结构:视觉几何组(Visual Geometry Group)
牛津大学的视觉几何组(Visual Geometry Group)设计了 VGGNet(也称为 VGG),一种经典的卷积神经网络 (CNN) 架构。在 2014 年 ILSVRC 分类任务中,VGG 取得了第二名的成绩。现在过去多年,VGG 仍然被广泛应用在图像识别、语音识别、机器翻译、机器人等领域。
zhangjiqun
2024/12/14
3K0
VGG的结构:视觉几何组(Visual Geometry Group)
深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一、CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二、LeNet-5网络 输入尺寸:32
10JQKA
2018/05/09
3K0
深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
秘闻 | 卷积神经网络的那些秘密
卷积神经网络CNN Convolutional Neural Networks是包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
潘永斌
2019/10/08
8720
秘闻 | 卷积神经网络的那些秘密
初识Cifar10之vgg网络
vgg是由牛津大学cv组和谷歌deepmind一起研究出来的深度卷积神经网络,我们通常说的vgg模型是指vgg-16(13层卷积层+3层全连接层)
Tom2Code
2022/06/08
7310
初识Cifar10之vgg网络
从0到1吃透卷积神经网络(CNN):原理与实战全解析
在当今人工智能(AI)飞速发展的时代,卷积神经网络(Convolutional Neural Network,简称 CNN)无疑是深度学习领域中最为耀眼的明星之一 。它就像是 AI 世界里的超级 “侦察兵”,在众多复杂的任务中发挥着至关重要的作用,尤其是在图像识别、目标检测、语义分割等计算机视觉领域,更是大放异彩。
正在走向自律
2025/05/19
1.9K0
从0到1吃透卷积神经网络(CNN):原理与实战全解析
CNN经典模型汇总[通俗易懂]
作为深度学习的基础,神经网络这个算法是必须要有深入的了解的,这里不介绍太多,简单介绍一下原理和单个神经元的结构:
全栈程序员站长
2022/08/02
2.8K0
CNN经典模型汇总[通俗易懂]
风格迁移
vgg 本身还是一个卷积神经网络(CNN)(详细介绍),卷积神经网络由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)。
用户1145562
2020/10/23
8520
推荐阅读
相关推荐
深度学习之VGG19模型简介
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档