Loading [MathJax]/jax/output/CommonHTML/jax.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >k均值聚类(1)

k均值聚类(1)

原创
作者头像
一口盐汽水
修改于 2020-11-19 03:34:40
修改于 2020-11-19 03:34:40
1.2K0
举报

分k个簇,起始随机选择k个点为簇的初始质心,选取距离k个质心最近的一个加入那个簇,之后更新质心,即簇内所有数值的平均,之后继续重复直到质心不再变化或者小于一个阈值。

数据集D中n个对象,

簇的集合,第i个簇的质心

簇内距离平方和:可以做评价指标,多次以不同的初始质心运行,选取得到最小SSD的结果

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
聚类分析方法(一)
  聚类分析 (clustering analysis) 是数据挖掘研究最为活跃、内容最为丰富的领域之一,其目的是通过对数据的深度分析,将一个数据集拆分成若干个子集 (每个子集称为一个簇,cluster),使得同一个簇中数据对象 (也称数据点) 之间的距离很近或相似度较高,而不同簇中的对象之间距离很远或相似度较低。
Francek Chen
2025/01/23
1140
聚类分析方法(一)
K-Means聚类算法原理
    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。
刘建平Pinard
2018/08/14
8600
K-Means聚类算法原理
机器学习十大经典算法之K-Means聚类算法
聚类在机器学习,数据挖掘,模式识别,图像分析以及生物信息等领域有广泛的应用。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离(一般是欧式距离)等。
墨明棋妙27
2022/09/23
5050
矩阵乘积 MatMul 的反向传播
有公式 \mathbf{y} = \mathbf{x}W ,其中 \mathbf{x} 是 D * M 矩阵,W 是 M * N 权重矩阵;另有损失函数 L 是对 \mathbf{y} 的函数,假设 对 的偏导已知(反向传播时是这样的),求 L 关于矩阵 \mathbf{x} 的偏导
王白石
2024/10/03
3060
机器学习中的常见问题——K-Means算法与矩阵分解的等价
K-Means算法是较为经典的聚类算法,假设训练数据集XXX为:{x1,x2,⋯,xn}{x1,x2,⋯,xn}\left \{ \mathbf{x}_1,\mathbf{x}_2,\cdots , \mathbf{x}_n \right \},其中,每一个样本xjxj \mathbf{x}_j为mmm维的向量。此时的样本为一个m×nm×nm\times n的矩阵:
felixzhao
2019/02/13
8670
分类规则挖掘(三)
  贝叶斯 (Bayes) 分类方法是以贝叶斯定理为基础的一系列分类算法的总称。贝叶斯定理就是以研究者Thomas Bayes的姓氏命名的,他是一位英国牧师,也是18世纪概率论和决策论的早期研究者之一。
Francek Chen
2025/01/22
610
分类规则挖掘(三)
聚类-KMeans算法(图解算法原理)
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,也就是将数据分成K个簇的算法,其中K是用户指定的。
唔仄lo咚锵
2022/10/04
3.3K0
聚类-KMeans算法(图解算法原理)
计算广告——平滑CTR
在互联网发展的过程中,广告成为了互联网企业盈利的一个很重要的部分,根据不同的广告形式,互联网广告可以分为:
felixzhao
2019/01/31
1.6K0
计算广告——平滑CTR
『数据挖掘十大算法 』笔记三:K-means
C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART
百川AI
2021/10/19
5780
聚类分析方法(三)
  聚类分析是将一个数据集分解成若于个子集,每个子集称为一个簇,所有子集形成的集合称为该对象集的一个聚类。一个好的聚类算法应该产生高质量的簇和高质量的聚类,即簇内相似度总体最高,同时簇间相似度总体最低。鉴于许多聚类算法,包括
Francek Chen
2025/01/23
1880
聚类分析方法(三)
数据仓库作业六:第9章 分类规则挖掘
1、设网球俱乐部有打球与气候条件的历史统计数据如下表1所示。它有“天气”、“气温”、“适度”和“风力”4个描述气候的条件属性,类别属性为“是”与“否”的二元取值,分别表示在当时的气候条件下是否适宜打球的两种类别。
Francek Chen
2025/01/22
930
数据仓库作业六:第9章 分类规则挖掘
决策树算法(1)
依据信息熵 entropy(D)=-\sum_{i=1}^kp(c_i)log_2p(c_i)
一口盐汽水
2020/11/15
5220
决策树算法(1)
【深度学习基础】线性神经网络 | softmax回归
深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。 【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
Francek Chen
2025/01/22
2050
【深度学习基础】线性神经网络 | softmax回归
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
MULTI-VIEW-DNN联合了多个域做的丰富特征,使用multi-view DNN模型构建推荐,包括app、新闻、电影和TV,相比于最好的算法,老用户提升49%,新用户提升110%。并且可以轻松的涵盖大量用户,解决冷启动问题。
百川AI
2022/05/15
1.1K0
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
机器学习:基于层次的聚类算法
本文介绍了聚类算法的基本概念、常用聚类算法、以及其在数据挖掘和机器学习中的应用。主要包括K-means算法、DBSCAN算法、层次聚类算法、凝聚层次聚类算法、Chameleon算法等。
夸克
2017/06/05
10.9K0
机器学习:基于层次的聚类算法
【数据挖掘】K-Means 二维数据聚类分析 ( K-Means 迭代总结 | K-Means 初始中心点选择方案 | K-Means 算法优缺点 | K-Means 算法变种 )
③ 距离计算方式 : 使用 曼哈顿距离 , 计算样本之间的相似度 ; 曼哈顿距离的计算方式是 两个维度的数据差 的 绝对值 相加 ;
韩曙亮
2023/03/27
9540
【数据挖掘】K-Means 二维数据聚类分析 ( K-Means 迭代总结 | K-Means 初始中心点选择方案 | K-Means 算法优缺点 | K-Means 算法变种 )
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
MULTI-VIEW-DNN联合了多个域做的丰富特征,使用multi-view DNN模型构建推荐,包括app、新闻、电影和TV,相比于最好的算法,老用户提升49%,新用户提升110%。并且可以轻松的涵盖大量用户,解决冷启动问题。
felixzhao
2019/06/24
1.6K0
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
【数据挖掘】神经网络 后向传播算法 向前传播输入 案例计算分析 ( 网络拓扑 | 输入层计算 | 隐藏层计算 | 输出层计算 )
② 连接方式 : 该网络结构中的连接方式是全连接方式 , 即每个节点都连接全部的相邻层的节点 ; ( 与之对应的是局部连接 )
韩曙亮
2023/03/27
7770
【数据挖掘】神经网络 后向传播算法 向前传播输入 案例计算分析 ( 网络拓扑 | 输入层计算 | 隐藏层计算 | 输出层计算 )
推荐系统(十四)——kdd'19动态定价方法(APP-LM,APP-DES,DNN-CL)
本文以航空服务为场景,设计了一系列动态定价方法,对于其他场景具有借鉴意义。
秋枫学习笔记
2022/09/19
1.2K0
PCA模型
主成分分析是指将数据中相关性很高的属性 / 变量转化成彼此相互独立或不相关的新属性 / 变量,利用较少的新属性 / 变量(主成分)去解释原来数据中的大部分属性 / 变量的一种降维方法。
hotarugali
2022/03/16
9010
推荐阅读
相关推荐
聚类分析方法(一)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档