前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >比赛杀器LightGBM常用操作总结!

比赛杀器LightGBM常用操作总结!

作者头像
Datawhale
发布2020-11-06 11:29:51
2.1K0
发布2020-11-06 11:29:51
举报
文章被收录于专栏:Datawhale专栏

作者:阿水,北京航空航天大学,Datawhale成员

LightGBM是基于XGBoost的一款可以快速并行的树模型框架,内部集成了多种集成学习思路,在代码实现上对XGBoost的节点划分进行了改进,内存占用更低训练速度更快。

LightGBM官网:https://lightgbm.readthedocs.io/en/latest/

参数介绍:https://lightgbm.readthedocs.io/en/latest/Parameters.html

本文内容如下,原始代码获取方式见文末。

  • 1 安装方法
  • 2 调用方法
    • 2.1 定义数据集
    • 2.2 模型训练
    • 2.3 模型保存与加载
    • 2.4 查看特征重要性
    • 2.5 继续训练
    • 2.6 动态调整模型超参数
    • 2.7 自定义损失函数
  • 3 调参方法
    • 人工调参
    • 网格搜索
    • 贝叶斯优化

1 安装方法

LightGBM的安装非常简单,在Linux下很方便的就可以开启GPU训练。可以优先选用从pip安装,如果失败再从源码安装。

  • 安装方法:从源码安装
代码语言:javascript
复制
git clone --recursive https://github.com/microsoft/LightGBM ; 
cd LightGBM
mkdir build ; cd build
cmake ..

# 开启MPI通信机制,训练更快
# cmake -DUSE_MPI=ON ..

# GPU版本,训练更快
# cmake -DUSE_GPU=1 ..
make -j4
  • 安装方法:pip安装
代码语言:javascript
复制
# 默认版本
pip install lightgbm

# MPI版本
pip install lightgbm --install-option=--mpi

# GPU版本
pip install lightgbm --install-option=--gpu

2 调用方法

在Python语言中LightGBM提供了两种调用方式,分为为原生的API和Scikit-learn API,两种方式都可以完成训练和验证。当然原生的API更加灵活,看个人习惯来进行选择。

2.1 定义数据集

代码语言:javascript
复制
df_train = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.train', header=None, sep='\t')
df_test = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.test', header=None, sep='\t')
W_train = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.train.weight', header=None)[0]
W_test = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.test.weight', header=None)[0]

y_train = df_train[0]
y_test = df_test[0]
X_train = df_train.drop(0, axis=1)
X_test = df_test.drop(0, axis=1)
num_train, num_feature = X_train.shape

# create dataset for lightgbm
# if you want to re-use data, remember to set free_raw_data=False

lgb_train = lgb.Dataset(X_train, y_train,
                        weight=W_train, free_raw_data=False)

lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train,
                       weight=W_test, free_raw_data=False)

2.2 模型训练

代码语言:javascript
复制
params = {
    'boosting_type': 'gbdt',
    'objective': 'binary',
    'metric': 'binary_logloss',
    'num_leaves': 31,
    'learning_rate': 0.05,
    'feature_fraction': 0.9,
    'bagging_fraction': 0.8,
    'bagging_freq': 5,
    'verbose': 0
}

# generate feature names
feature_name = ['feature_' + str(col) for col in range(num_feature)]
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10,
                valid_sets=lgb_train,  # eval training data
                feature_name=feature_name,
                categorical_feature=[21])

2.3 模型保存与加载

代码语言:javascript
复制
# save model to file
gbm.save_model('model.txt')

print('Dumping model to JSON...')
model_json = gbm.dump_model()

with open('model.json', 'w+') as f:
    json.dump(model_json, f, indent=4)

2.4 查看特征重要性

代码语言:javascript
复制
# feature names
print('Feature names:', gbm.feature_name())

# feature importances
print('Feature importances:', list(gbm.feature_importance()))

2.5 继续训练

代码语言:javascript
复制
# continue training
# init_model accepts:
# 1. model file name
# 2. Booster()
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10,
                init_model='model.txt',
                valid_sets=lgb_eval)
print('Finished 10 - 20 rounds with model file...')

2.6 动态调整模型超参数

代码语言:javascript
复制
# decay learning rates
# learning_rates accepts:
# 1. list/tuple with length = num_boost_round
# 2. function(curr_iter)
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10,
                init_model=gbm,
                learning_rates=lambda iter: 0.05 * (0.99 ** iter),
                valid_sets=lgb_eval)
print('Finished 20 - 30 rounds with decay learning rates...')

# change other parameters during training
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10,
                init_model=gbm,
                valid_sets=lgb_eval,
                callbacks=[lgb.reset_parameter(bagging_fraction=[0.7] * 5 + [0.6] * 5)])
print('Finished 30 - 40 rounds with changing bagging_fraction...')

2.7 自定义损失函数

代码语言:javascript
复制
# self-defined objective function
# f(preds: array, train_data: Dataset) -> grad: array, hess: array
# log likelihood loss
def loglikelihood(preds, train_data):
    labels = train_data.get_label()
    preds = 1. / (1. + np.exp(-preds))
    grad = preds - labels
    hess = preds * (1. - preds)
    return grad, hess

# self-defined eval metric
# f(preds: array, train_data: Dataset) -> name: string, eval_result: float, is_higher_better: bool
# binary error
# NOTE: when you do customized loss function, the default prediction value is margin
# This may make built-in evalution metric calculate wrong results
# For example, we are doing log likelihood loss, the prediction is score before logistic transformation
# Keep this in mind when you use the customization
def binary_error(preds, train_data):
    labels = train_data.get_label()
    preds = 1. / (1. + np.exp(-preds))
    return 'error', np.mean(labels != (preds > 0.5)), False

gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10,
                init_model=gbm,
                fobj=loglikelihood,
                feval=binary_error,
                valid_sets=lgb_eval)
print('Finished 40 - 50 rounds with self-defined objective function and eval metric...')

2.8 调参方法

人工调参

For Faster Speed
  • Use bagging by setting bagging_fraction and bagging_freq
  • Use feature sub-sampling by setting feature_fraction
  • Use small max_bin
  • Use save_binary to speed up data loading in future learning
  • Use parallel learning, refer to Parallel Learning Guide <./Parallel-Learning-Guide.rst>__
For Better Accuracy
  • Use large max_bin (may be slower)
  • Use small learning_rate with large num_iterations
  • Use large num_leaves (may cause over-fitting)
  • Use bigger training data
  • Try dart
Deal with Over-fitting
  • Use small max_bin
  • Use small num_leaves
  • Use min_data_in_leaf and min_sum_hessian_in_leaf
  • Use bagging by set bagging_fraction and bagging_freq
  • Use feature sub-sampling by set feature_fraction
  • Use bigger training data
  • Try lambda_l1, lambda_l2 and min_gain_to_split for regularization
  • Try max_depth to avoid growing deep tree
  • Try extra_trees
  • Try increasing path_smooth

网格搜索

代码语言:javascript
复制
lg = lgb.LGBMClassifier(silent=False)
param_dist = {"max_depth": [4,5, 7],
              "learning_rate" : [0.01,0.05,0.1],
              "num_leaves": [300,900,1200],
              "n_estimators": [50, 100, 150]
             }

grid_search = GridSearchCV(lg, n_jobs=-1, param_grid=param_dist, cv = 5, scoring="roc_auc", verbose=5)
grid_search.fit(train,y_train)
grid_search.best_estimator_, grid_search.best_score_

贝叶斯优化

代码语言:javascript
复制
import warnings
import time
warnings.filterwarnings("ignore")
from bayes_opt import BayesianOptimization
def lgb_eval(max_depth, learning_rate, num_leaves, n_estimators):
    params = {
             "metric" : 'auc'
        }
    params['max_depth'] = int(max(max_depth, 1))
    params['learning_rate'] = np.clip(0, 1, learning_rate)
    params['num_leaves'] = int(max(num_leaves, 1))
    params['n_estimators'] = int(max(n_estimators, 1))
    cv_result = lgb.cv(params, d_train, nfold=5, seed=0, verbose_eval =200,stratified=False)
    return 1.0 * np.array(cv_result['auc-mean']).max()

lgbBO = BayesianOptimization(lgb_eval, {'max_depth': (4, 8),
                                            'learning_rate': (0.05, 0.2),
                                            'num_leaves' : (20,1500),
                                            'n_estimators': (5, 200)}, random_state=0)

lgbBO.maximize(init_points=5, n_iter=50,acq='ei')
print(lgbBO.max)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Datawhale 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 安装方法
  • 2 调用方法
    • 2.1 定义数据集
      • 2.2 模型训练
        • 2.3 模型保存与加载
          • 2.4 查看特征重要性
            • 2.5 继续训练
              • 2.6 动态调整模型超参数
                • 2.7 自定义损失函数
                • 2.8 调参方法
                  • 人工调参
                    • For Faster Speed
                    • For Better Accuracy
                    • Deal with Over-fitting
                  • 网格搜索
                    • 贝叶斯优化
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档