Hello,大家好,在本系列的第一篇博文中,博主已经为大家介绍了MapReduce的相关概念。其中谈到了MapReduce主要由Map和Reduce两个过程组成!事实上,为了让Reduce可以并行处理Map的结果,需要对Map的输出进行一定的分区(Partition),排序(Sort),合并(Combine),分组(Group)等操作,得到<key,value-list>形式的中间结果,再交给对应的Reduce 进行处理,这个过程也就是小菌需要为大家介绍的,叫做Shuffle(混洗)。
Shuffle机制如下:
是不是发现可能看不懂!没关系下面开始细化详解一下。
下图为Shuffle阶段的四个操作的具体功能演示:
由于空间有限,2,3步骤过程较为抽象,只做文字说明
第1步:InputFormat
InputFormat 到hdfs上读取数据
将数据传给Split
第2步:Split
Split将数据进行逻辑切分,
将数据传给RR
第3步:RR(RecordReader)
RR:将传入的数据转换成一行一行的数据,输出行首字母偏移量和偏移量对应的数据
将数据传给MAP
第4步:MAP
MAP:根据业务需求实现自定义代码
将数据传给Shuffle的partition
第5步:partition
partition:按照一定的分区规则,将key value的list进行分区。
将数据传给Shuffle的Sort
第6步:Sort
Sort:对分区内的数据进行排序
将数据传给Shuffle的combiner
第7步:combiner
combiner:对数据进行局部聚合。
将数据传给Shuffle的Group
第8步:Group
Group:将相同key的key提取出来作为唯一的key,
将相同key对应的value获取出来作为value的list
将数据传给Reduce
第9步:Reduce
Reduce:根据业务需求进行最终的合并汇总。
将数据传给outputFormat
第10步:outputFormat
outputFormat:将数据写入HDFS
Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。 缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有