前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >海康相机SDK联合c++标定

海康相机SDK联合c++标定

作者头像
vv彭
发布2020-10-27 11:24:02
1.5K0
发布2020-10-27 11:24:02
举报
文章被收录于专栏:c#学习笔记

本文出处:https://blog.csdn.net/qq_15029743/article/details/81133443

首先放上一张效果动图:如果你需要这样的Demo,请下载:海康威视标定Demo

软件配置环境:VS2013+OpenCV2.49+海康威视相关SDK导入,Release下编译运行

标定部分核心代码:

代码语言:javascript
复制
m_progress.SetPos(0);
    CString  PIC = "";
    CStdioFile picpath("calibdata.ini", CFile::modeRead);
    picpath.ReadString(PIC);
    picpath.Close();
 
    // TODO:  在此添加控件通知处理程序代码
    ifstream fin("calibdata.ini"); /* 标定所用图像文件的路径 */
    ofstream fout("caliberation_result.txt");  /* 保存标定结果的文件 */
    //读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化    
    m_progress.SetPos(20);
    cout << "开始提取角点………………";
    int image_count = 0;  /* 图像数量 */
      /* 图像的尺寸 */
    Size board_size = Size(6, 8);    /* 标定板上每行、列的角点数 */
    vector<Point2f> image_points_buf;  /* 缓存每幅图像上检测到的角点 */
    vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
    string filename;
    int count = -1;//用于存储角点个数。
    while (getline(fin, filename))
    {
        image_count++;
        // 用于观察检验输出
        cout << "image_count = " << image_count << endl;
        /* 输出检验*/
        cout << "-->count = " << count;
        Mat imageInput = imread(filename);
        if (image_count == 1)  //读入第一张图片时获取图像宽高信息
        {
            image_size.width = imageInput.cols;
            image_size.height = imageInput.rows;
            cout << "image_size.width = " << image_size.width << endl;
            cout << "image_size.height = " << image_size.height << endl;
        }
 
        /* 提取角点 */
        if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
        {
            cout << "can not find chessboard corners!\n"; //找不到角点
            exit(1);
        }
        else
        {
            Mat view_gray;
            cvtColor(imageInput, view_gray, CV_RGB2GRAY);
            /* 亚像素精确化 */
            find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //对粗提取的角点进行精确化
            image_points_seq.push_back(image_points_buf);  //保存亚像素角点
            /* 在图像上显示角点位置 */
            drawChessboardCorners(view_gray, board_size, image_points_buf, true); //用于在图片中标记角点
            //imshow("Camera Calibration", view_gray);//显示图片
            imwrite("2.bmp", view_gray);
            CImage image;
            CString showJD = "2.bmp";
            int cx, cy;
            CRect   rect;
            //根据路径载入图片    
            //char strPicPath[] = PicName;
            image.Load(showJD);
            //获取图片的宽 高  
            cx = image.GetWidth();
            cy = image.GetHeight();
 
            CWnd *pWnd = NULL;
            pWnd = GetDlgItem(IDC_STATIC_JD);//获取控件句柄  
            //获取Picture Control控件的客户区  
            pWnd->GetClientRect(&rect);
 
            CDC *pDc = NULL;
            pDc = pWnd->GetDC();//获取picture control的DC    
            //设置指定设备环境中的位图拉伸模式  
            int ModeOld = SetStretchBltMode(pDc->m_hDC, STRETCH_HALFTONE);
            //从源矩形中复制一个位图到目标矩形,按目标设备设置的模式进行图像的拉伸或压缩  
            image.StretchBlt(pDc->m_hDC, rect, SRCCOPY);
            SetStretchBltMode(pDc->m_hDC, ModeOld);
            ReleaseDC(pDc);
 
 
 
            //waitKey(500);//暂停0.5S        
        }
    }
    int total = image_points_seq.size();
    cout << "total = " << total << endl;
    int CornerNum = board_size.width*board_size.height;  //每张图片上总的角点数
    for (int ii = 0; ii < total; ii++)
    {
        if (0 == ii%CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看 
        {
            int i = -1;
            i = ii / CornerNum;
            int j = i + 1;
            cout << "--> 第 " << j << "图片的数据 --> : " << endl;
        }
        if (0 == ii % 3)    // 此判断语句,格式化输出,便于控制台查看
        {
            cout << endl;
        }
        else
        {
            cout.width(10);
        }
        //输出所有的角点
        cout << " -->" << image_points_seq[ii][0].x;
        cout << " -->" << image_points_seq[ii][0].y;
    }
    cout << "角点提取完成!\n";
    m_progress.SetPos(50);
    //以下是摄像机标定
    cout << "开始标定………………";
    /*棋盘三维信息*/
    Size square_size = Size(10, 10);  /* 实际测量得到的标定板上每个棋盘格的大小 */
    vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
    /*内外参数*/
    /* 摄像机内参数矩阵 */
    vector<int> point_counts;  // 每幅图像中角点的数量
    vector<Mat> tvecsMat;  /* 每幅图像的旋转向量 */
    vector<Mat> rvecsMat; /* 每幅图像的平移向量 */
    /* 初始化标定板上角点的三维坐标 */
    int i, j, t;
    for (t = 0; t < image_count; t++)
    {
        vector<Point3f> tempPointSet;
        for (i = 0; i < board_size.height; i++)
        {
            for (j = 0; j < board_size.width; j++)
            {
                Point3f realPoint;
                /* 假设标定板放在世界坐标系中z=0的平面上 */
                realPoint.x = i*square_size.width;
                realPoint.y = j*square_size.height;
                realPoint.z = 0;
                tempPointSet.push_back(realPoint);
            }
        }
        object_points.push_back(tempPointSet);
    }
    /* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
    for (i = 0; i < image_count; i++)
    {
        point_counts.push_back(board_size.width*board_size.height);
    }
    /* 开始标定 */
    calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
    cout << "标定完成!\n";
    m_progress.SetPos(70);
    //对标定结果进行评价
    cout << "开始评价标定结果………………\n";
    double total_err = 0.0; /* 所有图像的平均误差的总和 */
    double err = 0.0; /* 每幅图像的平均误差 */
    vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
    cout << "\t每幅图像的标定误差:\n";
    fout << "每幅图像的标定误差:\n";
    for (i = 0; i < image_count; i++)
    {
        vector<Point3f> tempPointSet = object_points[i];
        /* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
        projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
        /* 计算新的投影点和旧的投影点之间的误差*/
        vector<Point2f> tempImagePoint = image_points_seq[i];
        Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
        Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
        for (int j = 0; j < tempImagePoint.size(); j++)
        {
            image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
            tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
        }
        err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
        total_err += err /= point_counts[i];
        std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
        fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
    }
    std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
    fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
    std::cout << "评价完成!" << endl;
    //保存定标结果      
    std::cout << "开始保存定标结果………………" << endl;
    Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
    fout << "相机内参数矩阵:" << endl;
    fout << cameraMatrix << endl << endl;
    fout << "畸变系数:\n";
    fout << distCoeffs << endl << endl << endl;
    for (int i = 0; i < image_count; i++)
    {
        fout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
        fout << tvecsMat[i] << endl;
        /* 将旋转向量转换为相对应的旋转矩阵 */
        Rodrigues(tvecsMat[i], rotation_matrix);
        fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
        fout << rotation_matrix << endl;
        fout << "第" << i + 1 << "幅图像的平移向量:" << endl;
        fout << rvecsMat[i] << endl << endl;
 
    }
    std::cout << "完成保存" << endl;
    m_progress.SetPos(80);
    fout << endl;
    /************************************************************************
    显示定标结果
    *************************************************************************/
    std::cout << "保存矫正图像" << endl;
    string imageFileName;
    std::stringstream StrStm;
    for (int i = 0; i != image_count; i++)
    {
        std::cout << "Frame #" << i + 1 << "..." << endl;
        initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy);
        func(cameraMatrix, distCoeffs, R, image_size, mapx, mapy);
        StrStm.clear();
        imageFileName.clear();
        string filePath = PIC;
        /*StrStm << i + 1;
        StrStm >> imageFileName;
        filePath += imageFileName;
        filePath += ".bmp";*/
        Mat imageSource = imread(filePath);
        Mat newimage = imageSource.clone();
        //另一种不需要转换矩阵的方式
        //undistort(imageSource,newimage,cameraMatrix,distCoeffs);
        remap(imageSource, newimage, mapx, mapy, INTER_LINEAR);
        /*imshow("原始图像", imageSource);
    imshow("矫正后图像", newimage);*/
        
        CImage  image1;
        MatToCImage(newimage, image1);
        //PIC = PicName;
        CImage  image;
        int cx, cy;
        CRect   rect;
        //根据路径载入图片    
        //char strPicPath[] = PicName;
        image.Load(PIC);
        //获取图片的宽 高  
        cx = image1.GetWidth();
        cy = image1.GetHeight();
 
        CWnd *pWnd = NULL;
        pWnd = GetDlgItem(IDC_STATIC_JZ);//获取控件句柄  
        //获取Picture Control控件的客户区  
        pWnd->GetClientRect(&rect);
 
        CDC *pDc = NULL;
        pDc = pWnd->GetDC();//获取picture control的DC    
        //设置指定设备环境中的位图拉伸模式  
        int ModeOld = SetStretchBltMode(pDc->m_hDC, STRETCH_HALFTONE);
        //从源矩形中复制一个位图到目标矩形,按目标设备设置的模式进行图像的拉伸或压缩  
        image1.StretchBlt(pDc->m_hDC, rect, SRCCOPY);
        SetStretchBltMode(pDc->m_hDC, ModeOld);
        ReleaseDC(pDc);
        
 
        waitKey();
        StrStm.clear();
        filePath.clear();
        CString str3 = "_calibrated";
        PIC.Insert(14, str3);
        imageFileName = PIC;
        imwrite(imageFileName, newimage);
        file.Open("calibrated.ini", CFile::modeCreate | CFile::modeNoTruncate | CFile::modeWrite);
        file.Write(PIC, strlen(PIC));
        file.Close();
    }
    std::cout << "保存结束" << endl;
    m_progress.SetPos(100);
    return;
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-10-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档