前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >告别CNN?一张图等于16x16个字,计算机视觉也用上Transformer了

告别CNN?一张图等于16x16个字,计算机视觉也用上Transformer了

作者头像
AI科技大本营
发布2020-10-27 10:24:35
1.1K0
发布2020-10-27 10:24:35
举报
文章被收录于专栏:AI科技大本营的专栏

编译 | 凯隐

出品 | AI科技大本营(ID:rgznai100)

Transformer是由谷歌于2017年提出的具有里程碑意义的模型,同时也是语言AI革命的关键技术。在此之前的SOTA模型都是以循环神经网络为基础(RNN, LSTM等)。从本质上来讲,RNN是以串行的方式来处理数据,对应到NLP任务上,即按照句中词语的先后顺序,每一个时间步处理一个词语。

相较于这种串行模式,Transformer的巨大创新便在于并行化的语言处理:文本中的所有词语都可以在同一时间进行分析,而不是按照序列先后顺序。为了支持这种并行化的处理方式,Transformer依赖于注意力机制。注意力机制可以让模型考虑任意两个词语之间的相互关系,且不受它们在文本序列中位置的影响。通过分析词语之间的两两相互关系,来决定应该对哪些词或短语赋予更多的注意力。

相较于RNN必须按时间顺序进行计算,Transformer并行处理机制的显著好处便在于更高的计算效率,可以通过并行计算来大大加快训练速度,从而能在更大的数据集上进行训练。例如GPT-3(Transformer的第三代)的训练数据集大约包含5000亿个词语,并且模型参数量达到1750亿,远远超越了现有的任何基于RNN的模型。

现有的各种基于Transformer的模型基本只是与NLP任务有关,这得益于GPT-3等衍生模型的成功。然而,最近ICLR 2021的一篇投稿文章开创性地将Transformer模型跨领域地引用到了计算机视觉任务中,并取得了不错地成果。这也被许多AI学者认为是开创了CV领域的新时代,甚至可能完全取代传统的卷积操作。

论文链接:

https://openreview.net/pdf?id=YicbFdNTTy

其中,Google的Deepmind 研究科学家Oriol Vinyals的看法很直接:告别卷积。

以下为该论文的详细工作:

基本内容

Transformer的核心原理是注意力机制,注意力机制在具体实现时主要以矩阵乘法计算为基础,这意味着可以通过并行化来加快计算速度,相较于只能按时间顺序进行串行计算的RNN模型而言,大大提高了训练速度,从而能够在更大的数据集上进行训练。

此外,Transformer模型还具有良好的可扩展性和伸缩性,在面对具体的任务时,常用的做法是先在大型数据集上进行训练,然后在指定任务数据集上进行微调。并且随着模型大小和数据集的增长,模型本身的性能也会跟着提升,目前为止还没有一个明显的性能天花板。

Transformer的这两个特性不仅让其在NLP领域大获成功,也提供了将其迁移到其他任务上的潜力。此前已经有文章尝试将注意力机制应用到图像识别任务上,但他们要么是没有脱离CNN的框架,要么是对注意力机制进行了修改,导致计算效率低,不能很好地实现并行计算加速。因此在大规模图片分类任务中,以ResNet为基本结构的模型依然是主流。

这篇文章首先尝试在几乎不做改动的情况下将Transformer模型应用到图像分类任务中,在 ImageNet 得到的结果相较于 ResNet 较差,这是因为Transformer模型缺乏归纳偏置能力,例如并不具备CNN那样的平移不变性和局部性,因此在数据不足时不能很好的泛化到该任务上。

然而,当训练数据量得到提升时,归纳偏置的问题便能得到缓解,即如果在足够大的数据集上进行与训练,便能很好地迁移到小规模数据集上。

在此基础上,作者提出了Vision Transformer模型。下面将介绍模型原理。

模型原理

该研究提出了一种称为Vision Transformer(ViT)的模型,在设计上是尽可能遵循原版Transformer结构,这也是为了尽可能保持原版的性能。

虽然可以并行处理,但Transformer依然是以一维序列作为输入,然而图片数据都是二维的,因此首先要解决的问题是如何将图片以合适的方式输入到模型中。本文采用的是切块 + embedding的方法,如下图:

首先将原始图片划分为多个子图(patch),每个子图相当于一个word,这个过程也可以表示为:

其中x是输入图片,xp则是处理后的子图序列,P2则是子图的分辨率,N则是切分后的子图数量(即序列长度),显然有

。由于Transformer只接受1D序列作为输入,因此还需要对每个patch进行embedding,通过一个线性变换层将二维的patch嵌入表示为长度为D的一维向量,得到的输出被称为patch嵌入。

类似于BERT模型的[class] token机制,对每一个patch嵌入

,都会额外预测一个可学习的嵌入表示,然后将这个嵌入表示在encoder中的最终输出(

)作为对应patch的表示。在预训练和微调阶段,分类头都依赖于

此外还加入了位置嵌入信息(图中的0,1,2,3…),因为序列化的patch丢失了他们在图片中的位置信息。作者尝试了各种不同的2D嵌入方法,但是相较于一般的1D嵌入并没有任何显著的性能提升,因此最终使用联合嵌入作为输入。

模型结构与标准的Transformer相同(如上图右侧),即由多个交互层多头注意力(MSA)和多层感知器(MLP)构成。在每个模块前使用LayerNorm,在模块后使用残差连接。使用GELU作为MLP的激活函数。整个模型的更新公式如下:

其中(1)代表了嵌入层的更新,公式(2)和(3)则代表了MSA和MLP的前向传播。

此外本文还提出了一种直接采用ResNet中间层输出作为图片嵌入表示的方法,可以作为上述基于patch分割方法的替代。

模型训练和分辨率调整

和之前常用的做法一样,在针对具体任务时,先在大规模数据集上训练,然后根据具体的任务需求进行微调。这里主要是更换最后的分类头,按照分类数来设置分类头的参数形状。此外作者还发现在更高的分辨率进行微调往往能取得更好的效果,因为在保持patch分辨率不变的情况下,原始图像分辨率越高,得到的patch数越大,因此得到的有效序列也就越长。

对比实验

4.1 实验设置

首先作者设计了多个不同大小的ViT变体,分别对应不同的复杂度。

数据集主要使用ILSVRC-2012,ImageNet-21K,以及JFT数据集。

4.2 与SOTA模型的性能对比

首先是和ResNet以及efficientNet的对比,这两个模型都是比较有代表的基于CNN的模型。

其中ViT模型都是在JFT-300M数据集上进行了预训练。从上表可以看出,复杂度较低,规模较小的ViT-L在各个数据集上都超过了ResNet,并且其所需的算力也要少十多倍。ViT-H规模更大,但性能也有进一步提升,在ImageNet, CIFAR,Oxford-IIIT, VTAB等数据集上超过了SOTA,且有大幅提升。

作者进一步将VTAB的任务分为多组,并对比了ViT和其他几个SOTA模型的性能:

可以看到除了在Natrual任务中ViT略低于BiT外,在其他三个任务中都达到了SOTA,这再次证明了ViT的性能强大。

4.3 不同预训练数据集对性能的影响

预训练对于该模型而言是一个非常重要的环节,预训练所用数据集的规模将影响模型的归纳偏置能力,因此作者进一步探究了不同规模的预训练数据集对性能的影响:

上图展示了不同规模的预训练数据集(横轴)对不同大小的模型的性能影响,注意微调时的数据集固定为ImageNet。可以看到对大部分模型而言,预训练数据集规模越大,最终的性能越好。并且随着数据集的增大,较大的ViT模型(ViT-H/14)要由于较小的ViT模型(ViT-L)。

此外,作者还在不同大小的JFT数据集的子集上进行了模型训练:

可以发现ViT-L对应的两个模型在数据集规模增大时有非常明显的提升,而ResNet则几乎没有变化。这里可以得出两个结论,一是ViT模型本身的性能上限要优于ResNet,这可以理解为注意力机制的上限高于CNN。二是在数据集非常大的情况下,ViT模型性能大幅超越ResNet, 这说明在数据足够的情况下,注意力机制完全可以代替CNN,而在数据集较小的情况下(10M),卷积则更为有效。

除了以上实验,作者还探究了ViT模型的迁移性能,实验结果表明不论是性能还是算力需求,ViT模型在进行迁移时都优于ResNet。

可视化分析

可视化分析可以帮助我们了解ViT的特征学习过程。显然,ViT模型的注意力一定是放在了与分类有关的区域:

总结

本文提出的基于patch分割的图像解释策略,在结合Transformer的情况下取得了非常好的效果,这为CV领域的其他研究提供了一个很好的思路。此外,接下来应该会出现许多基于这篇工作的研究,进一步将这一划时代的模型应用到更多的任务上,例如目标检测、实例分割、行为识别等等。此外,也会出现针对patch分割策略的改进,来进一步提高模型性能。

相关链接:

https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/#de89ca259eb1

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档