在数学上,可以通过选择结点并使用(通常是三次)回归来估计结之间的点,并使用演算来确保每条单独的回归线连接在一起时曲线都平滑,从而重现该过程。平滑的程度由参数控制,通常在0和1之间的范围内。
为了说明,我们考虑由来自1910至2004年的小麦产量数据集 。
生成数据图,并叠加样条曲线平滑度。
> plot(wheat$year,wheat$production)
> lines(smooth.spline(wheat$year,wheat$production))结果如下:

应用的平滑量 由参数 spar 控制 。我们检查效果:
sapply(spars,plotfn)该图显示如下:

尽管大多数平滑器需要指定带宽,数据部分或平滑级别,但超级平滑的不同之处在于它可以自行解决这些问题。因此,它是需要平滑处理而无需任何用户干预的情况的绝佳选择。Supersmoother通过执行许多简单的局部回归平滑来工作,并且在每个x值处,它使用这些平滑来确定要使用的最佳y值。在R中,可通过 supsmu 函数获得 超级平滑器。
为了说明这一点,考虑汽车数据。以下几行产生了 重量 与 MPG的关系图,并叠加了一条超平滑线。
该图显示如下:

在使用点阵图形时,我们已经看到了 panel.lmline 的使用 ,它在点阵图的每个面板中显示最佳回归线。可以使用类似的函数 panel.loess 在图的每个面板中叠加局部加权回归平滑器。作为简单说明,考虑内置的 Orange 数据集,其中包含有关几棵橙树的年龄和周长的信息。首先,让我们看一幅具有最佳回归线平滑度的图,该图叠加在 每 棵树的年龄 与 周长图上 :
要创建相同的图,但要使用 panel.loess 函数,可以使用以下代码:
> xyplot(circumference~age|Tree,
+ ...)})
如果 您想让它更平滑,可以使用 panel.lines 函数直接绘制它:
> xyplot(circumference~age|Tree,
+ ,...)})

参考文献
1.用SPSS估计HLM层次线性模型模型
2.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)
3.基于R语言的lmer混合线性回归模型
4.R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
5.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析
6.使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
7.R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化
8.R语言用线性回归模型预测空气质量臭氧数据
9.R语言分层线性模型案例
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。