前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >扩展之Tensorflow2.0 | 20 TF2的eager模式与求导

扩展之Tensorflow2.0 | 20 TF2的eager模式与求导

作者头像
机器学习炼丹术
发布2020-10-15 14:25:01
1.9K0
发布2020-10-15 14:25:01
举报
文章被收录于专栏:机器学习炼丹术

【机器学习炼丹术】的学习笔记分享

参考目录:

  • 1 什么是eager模式
  • 2 TF1.0 vs TF2.0
  • 3 获取导数/梯度
  • 4 获取高阶导数

之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型。这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度。

1 什么是eager模式

Eager模式(积极模式),我认为是TensorFlow2.0最大的更新,没有之一。

Tensorflow1.0的时候还是静态计算图,在《小白学PyTorch》系列的第一篇内容,就讲解了Tensorflow的静态特征图和PyTorch的动态特征图的区别。Tensorflow2.0提出了eager模式,在这个模式下,也支持了动态特征图的构建

不得不说,改的和PyTorch越来越像了,但是人类的工具总是向着简单易用的方向发展,这肯定是无可厚非的。

2 TF1.0 vs TF2.0

TF1.0中加入要计算梯度,是只能构建静态计算图的。

  1. 是先构建计算流程;
  2. 然后开始起一个会话对象;
  3. 把数据放到这个静态的数据图中。

整个流程非常的繁琐。

代码语言:javascript
复制
# 这个是tensorflow1.0的代码
import tensorflow as tf
a = tf.constant(3.0)
b = tf.placeholder(dtype = tf.float32)
c = tf.add(a,b)
sess = tf.Session() #创建会话对象
init = tf.global_variables_ini                            tializer()
sess.run(init) #初始化会话对象
feed = {
    b: 2.0
} #对变量b赋值
c_res = sess.run(c, feed) #通过会话驱动计算图获取计算结果
print(c_res)

代码中,我们需要用palceholder先开辟一个内存空间,然后构建好静态计算图后,在把数据赋值到这个被开辟的内存中,然后再运行整个计算流程。

下面我们来看在eager模式下运行上面的代码

代码语言:javascript
复制
import tensorflow as tf
a = tf.Variable(2)
b = tf.Variable(20)
c = a + b

没错,这样的话,就已经完成一个动态计算图的构建,TF2是默认开启eager模式的,所以不需要要额外的设置了。这样的构建方法,和PyTorch是非常类似的。

3 获取导数/梯度

假如我们使用的是PyTorch,那么我们如何得到

w\times x + b

的导数呢?

代码语言:javascript
复制
import torch
# Create tensors.
x = torch.tensor(10., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)
# Build a computational graph.
y = w * x + b    # y = 2 * x + 3
# Compute gradients.
y.backward()
# Print out the gradients.
print(x.grad)    # tensor(2.)
print(w.grad)    # tensor(10.)
print(b.grad)    # tensor(1.)

都没问题吧,下面用Tensorflow2.0来重写一下上面的内容:

代码语言:javascript
复制
import tensorflow as tf
x = tf.convert_to_tensor(10.)
w = tf.Variable(2.)
b = tf.Variable(3.)
with tf.GradientTape() as tape:
    z = w * x + b
dz_dw = tape.gradient(z,w)
print(dz_dw)
>>> tf.Tensor(10.0, shape=(), dtype=float32)

我们需要注意这几点:

  • 首先结果来看,没问题,w的梯度就是10;
  • 对于参与计算梯度、也就是参与梯度下降的变量,是需要用tf.Varaible来定义的;
  • 不管是变量还是输入数据,都要求是浮点数float,如果是整数的话会报错,并且梯度计算输出None;
  • tensorflow提供tf.GradientTape来实现自动求导,所以在tf.GradientTape内进行的操作,都会记录在tape当中,这个就是tape的概念。一个摄影带,把计算的过程录下来,然后进行求导操作

现在我们不仅要输出w的梯度,还要输出b的梯度,我们把上面的代码改成:

代码语言:javascript
复制
import tensorflow as tf
x = tf.convert_to_tensor(10.)
w = tf.Variable(2.)
b = tf.Variable(3.)
with tf.GradientTape() as tape:
    z = w * x + b
dz_dw = tape.gradient(z,w)
dz_db = tape.gradient(z,b)
print(dz_dw)
print(dz_db)

运行结果为:

这个错误翻译过来就是一个non-persistent的录像带,只能被要求计算一次梯度。 我们用tape计算了w的梯度,然后这个tape清空了数据,所有我们不能再计算b的梯度。

解决方法也很简单,我们只要设置这个tape是persistent就行了:

代码语言:javascript
复制
import tensorflow as tf
x = tf.convert_to_tensor(10.)
w = tf.Variable(2.)
b = tf.Variable(3.)
with tf.GradientTape(persistent=True) as tape:
    z = w * x + b
dz_dw = tape.gradient(z,w)
dz_db = tape.gradient(z,b)
print(dz_dw)
print(dz_db)

运行结果为:

4 获取高阶导数

代码语言:javascript
复制
import tensorflow  as tf
x = tf.Variable(1.0)
with tf.GradientTape() as t1:
    with tf.GradientTape() as t2:
        y = x * x * x
    dy_dx = t2.gradient(y, x)
    print(dy_dx)
d2y_d2x = t1.gradient(dy_dx, x)
print(d2y_d2x)
>>> tf.Tensor(3.0, shape=(), dtype=float32)
>>> tf.Tensor(6.0, shape=(), dtype=float32)

想要得到二阶导数,就要使用两个tape,然后对一阶导数再求导就行了。

- END -

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习炼丹术 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 什么是eager模式
  • 2 TF1.0 vs TF2.0
  • 3 获取导数/梯度
  • 4 获取高阶导数
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档