监控是整个产品周期中最重要的一环,及时预警减少故障影响免扩大,而且能根据历史数据追溯问题。
对系统不间断实时监控
实时反馈系统当前状态
保证业务持续性运行
监控方案 | 告警 | 特点 | 适用 |
---|---|---|---|
Zabbix | Y | 大量定制工作 | 大部分的互联网公司 |
open-falcon | Y | 功能模块分解比较细,显得更复杂 | 系统和应用监控 |
Prometheus+Grafana | Y | 扩展性好 | 容器,应用,主机全方面监控 |
市场上主流的开源监控系统基本都是这个流程:
l 数据采集:对监控数据采集
l 数据存储:将监控数据持久化存储,用于历时查询
l 数据分析:数据按需处理,例如阈值对比、聚合
l 数据展示:Web页面展示
l 监控告警:电话,邮件,微信,短信
要监控什么
硬件监控 | 1)通过远程控制卡:Dell的IDRAC 2)IPMI(硬件管理接口)监控物理设备。 3)网络设备:路由器、交换机 温度,硬件故障等。 |
---|---|
系统监控 | CPU,内存,硬盘利用率,硬件I/O,网卡流量,TCP状态,进程数 |
应用监控 | Nginx、Tomcat、PHP、MySQL、Redis等,业务涉及的服务都要监控起来 |
日志监控 | 系统日志、服务日志、访问日志、错误日志,这个现成的开源的ELK解决方案,会在下一章讲解 |
安全监控 | 1)可以利用Nginx+Lua实现WAF功能,并存储到ES,通过Kibana可视化展示不同的攻击类型。 2)用户登录数,passwd文件变化,其他关键文件改动 |
API监控 | 收集API接口操作方法(GET、POST等)请求,分析负载、可用性、正确性、响应时间 |
业务监控 | 例如电商网站,每分钟产生多少订单、注册多少用户、多少活跃用户、推广活动效果(产生多少用户、多少利润) |
流量分析 | 根据流量获取用户相关信息,例如用户地理位置、某页面访问状况、页面停留时间等。监控各地区访问业务网络情况,优化用户体验和提升收益 |
Prometheus(普罗米修斯)是一个最初在SoundCloud上构建的监控系统。自2012年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护,Prometheus于2016年加入云原生云计算基金会(CNCF),成为继Kubernetes之后的第二个托管项目。
https://prometheus.io
https://github.com/prometheus
作为新一代的监控框架,Prometheus 具有以下特点:
Prometheus适用于以机器为中心的监控以及高度动态面向服务架构的监控。
Prometheus将所有数据存储为时间序列;具有相同度量名称以及标签属于同一个指标。
每个时间序列都由度量标准名称和一组键值对(也成为标签)唯一标识。
时间序列格式:
<metric name>{<label name>=<label value>, ...}
示例:api_http_requests_total{method="POST", handler="/messages"}
指标类型
指标和实例
实例:可以抓取的目标称为实例(Instances)
作业:具有相同目标的实例集合称为作业(Job)
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: 'node'
static_configs:
- targets: ['192.168.1.10:9090']
下载最新版本的Prometheus,然后解压缩并运行它:
https://prometheus.io/download/
https://prometheus.io/docs/prometheus/latest/getting_started/
tar xvfz prometheus-*.tar.gz
cd prometheus-*
mv prometheus-* /usr/local/prometheus
系统服务
[Unit]
Description=https://prometheus.io
[Service]
Restart=on-failure
ExecStart=/usr/local/prometheus/prometheus --config.file=/usr/local/prometheus/prometheus.yml
[Install]
WantedBy=multi-user.target
常用命令
启动prometheus
./prometheus --config.file=prometheus.yml
检测配置文件
./promtool check config prometheus.yml
重新加载配置文件
kill -hup PID
https://prometheus.io/docs/prometheus/latest/installation/
prometheus.yml通过运行以下命令将您从主机绑定:
docker run -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/prometheus.yml \
prom/prometheus
或者为配置使用额外的卷:
docker run -p 9090:9090 -v /prometheus-data \
prom/prometheus --config.file=/prometheus-data/prometheus.yml
访问Web
http://localhost:9090访问自己的状态页面
可以通过访问localhost:9090验证Prometheus自身的指标:localhost:9090/metrics
Prometheus从目标机上通过http方式拉取采样点数据, 它也可以拉取自身服务数据并监控自身的健康状况
当然Prometheus服务拉取自身服务采样数据,并没有多大的用处,但是它是一个好的DEMO。保存下面的Prometheus配置,并命名为:prometheus.yml:
global:
scrape_interval: 15s # 默认情况下,每15s拉取一次目标采样点数据。
# 我们可以附加一些指定标签到采样点度量标签列表中, 用于和第三方系统进行通信, 包括:federation, remote storage, Alertmanager
external_labels:
monitor: 'codelab-monitor'
# 下面就是拉取自身服务采样点数据配置
scrape_configs:
# job名称会增加到拉取到的所有采样点上,同时还有一个instance目标服务的host:port标签也会增加到采样点上
- job_name: 'prometheus'
# 覆盖global的采样点,拉取时间间隔5s
scrape_interval: 5s
static_configs:
- targets: ['localhost:9090']
global:全局配置
alerting:告警配置
rule_files:告警规则
scrape_configs:配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现
global:
# 默认抓取周期,可用单位ms、smhdwy #设置每15s采集数据一次,默认1分钟
[ scrape_interval: <duration> | default = 1m ]
# 默认抓取超时
[ scrape_timeout: <duration> | default = 10s ]
# 估算规则的默认周期# 每15秒计算一次规则。默认1分钟
[ evaluation_interval: <duration> | default = 1m ]
# 和外部系统(例如AlertManager)通信时为时间序列或者警情(Alert)强制添加的标签列表
external_labels:
[ <labelname>: <labelvalue> ... ]
# 规则文件列表
rule_files:
[ - <filepath_glob> ... ]
# 抓取配置列表
scrape_configs:
[ - <scrape_config> ... ]
# Alertmanager相关配置
alerting:
alert_relabel_configs:
[ - <relabel_config> ... ]
alertmanagers:
[ - <alertmanager_config> ... ]
# 远程读写特性相关的配置
remote_write:
[ - <remote_write> ... ]
remote_read:
[ - <remote_read> ... ]
根据配置的任务(job)以http/s周期性的收刮(scrape/pull)
指定目标(target)上的指标(metric)。目标(target)
可以以静态方式或者自动发现方式指定。Prometheus将收刮(scrape)的指标(metric)保存在本地或者远程存储上。
使用scrape_configs定义采集目标
配置一系列的目标,以及如何抓取它们的参数。一般情况下,每个scrape_config对应单个Job。
目标可以在scrape_config中静态的配置,也可以使用某种服务发现机制动态发现。
# 任务名称,自动作为抓取到的指标的一个标签
job_name: <job_name>
# 抓取周期
[ scrape_interval: <duration> | default = <global_config.scrape_interval> ]
# 每次抓取的超时
[ scrape_timeout: <duration> | default = <global_config.scrape_timeout> ]
# 从目标抓取指标的URL路径
[ metrics_path: <path> | default = /metrics ]
# 当添加标签发现指标已经有同名标签时,是否保留原有标签不覆盖
[ honor_labels: <boolean> | default = false ]
# 抓取协议
[ scheme: <scheme> | default = http ]
# HTTP请求参数
params:
[ <string>: [<string>, ...] ]
# 身份验证信息
basic_auth:
[ username: <string> ]
[ password: <secret> ]
[ password_file: <string> ]
# Authorization请求头取值
[ bearer_token: <secret> ]
# 从文件读取Authorization请求头
[ bearer_token_file: /path/to/bearer/token/file ]
# TLS配置
tls_config:
[ <tls_config> ]
# 代理配置
[ proxy_url: <string> ]
# DNS服务发现配置
dns_sd_configs:
[ - <dns_sd_config> ... ]
# 文件服务发现配置
file_sd_configs:
[ - <file_sd_config> ... ]
# K8S服务发现配置
kubernetes_sd_configs:
[ - <kubernetes_sd_config> ... ]
# 此Job的静态配置的目标列表
static_configs:
[ - <static_config> ... ]
# 目标重打标签配置
relabel_configs:
[ - <relabel_config> ... ]
# 指标重打标签配置
metric_relabel_configs:
[ - <relabel_config> ... ]
# 每次抓取允许的最大样本数量,如果在指标重打标签后,样本数量仍然超过限制,则整个抓取认为失败
# 0表示不限制
[ sample_limit: <int> | default = 0
relabel_configs
relabel_configs :允许在采集之前对任何目标及其标签进行修改
重新标签的意义?
action:重新标签动作
支持服务发现的来源:
Prometheus也提供了服务发现功能,可以从consul,dns,kubernetes,file等等多种来源发现新的目标。其中最简单的是从文件发现服务。
https://github.com/prometheus/prometheus/tree/master/discovery
服务发现支持: endpoints,ingress,kubernetes,node,pod,service
node_exporter:用于*NIX系统监控,使用Go语言编写的收集器。
使用文档:https://prometheus.io/docs/guides/node-exporter/
GitHub:https://github.com/prometheus/node_exporter
exporter列表:https://prometheus.io/docs/instrumenting/exporters/
收集到 node_exporter 的数据后,我们可以使用 PromQL 进行一些业务查询和监控,下面是一些比较常见的查询。
注意:以下查询均以单个节点作为例子,如果大家想查看所有节点,将 instance="xxx" 去掉即可。
CPU使用率:
100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance) * 100)
内存使用率:
100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 100
磁盘使用率:
100 - (node_filesystem_free_bytes{mountpoint="/",fstype=~"ext4|xfs"} / node_filesystem_size_bytes{mountpoint="/",fstype=~"ext4|xfs"} * 100)
使用systemd收集器:
--collector.systemd.unit-whitelist=".+" 从systemd中循环正则匹配单元 --collector.systemd.unit-whitelist="(docker|sshd|nginx).service"白名单,收集目标
/usr/bin/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|sshd|nginx).service
node_systemd_unit_state{name=“docker.service”} 只查询docker服务
node_systemd_unit_state{name=“docker.service”,state=“active”} 返回活动状态,值是1
node_systemd_unit_state{name=“docker.service”} == 1当前服务状态
Grafana是一个开源的度量分析和可视化系统。
https://grafana.com/grafana/download
Grafana支持查询普罗米修斯。自Grafana 2.5.0(2015-10-28)以来,包含了Prometheus的Grafana数据源。
cAdvisor(Container Advisor)用于收集正在运行的容器资源使用和性能信息。
https://github.com/google/cadvisor
https://grafana.com/dashboards/193
运行单个cAdvisor来监控整个Docker主机
docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:ro \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--volume=/dev/disk/:/dev/disk:ro \
--publish=8080:8080 \
--detach=true \
--name=cadvisor \
google/cadvisor:latest
使用Prometheus监控cAdvisor
cAdvisor将容器统计信息公开为Prometheus指标。默认情况下,这些指标在/metrics HTTP端点下提供。可以通过设置-prometheus_endpoint命令行标志来自定义此端点。
要使用Prometheus监控cAdvisor,只需在Prometheus中配置一个或多个作业,这些作业会在该指标端点处刮取相关的cAdvisor流程。
mysql_exporter:用于收集MySQL性能信息。
https://github.com/prometheus/mysqld_exporter
https://grafana.com/dashboards/7362
登录mysql为exporter创建账号:
mysql>CREATE USER 'exporter'@'localhost' IDENTIFIED BY 'XXXXXXXX' WITH MAX_USER_CONNECTIONS 3;
mysql>GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'exporter'@'localhost';
# cat .my.cnf
[client]
user=exporter
password=exporter123
# ./mysqld_exporter --config.my-cnf=.my.cnf
- job_name: mysql
static_configs:
- targets:
- 192.168.31.66:9104
使用prometheus进行告警分为两部分:Prometheus Server中的告警规则会向Alertmanager发送。然后,Alertmanager管理这些告警,包括进行重复数据删除,分组和路由,以及告警的静默和抑制。
在Prometheus平台中,警报由独立的组件Alertmanager处理。通常情况下,我们首先告诉Prometheus Alertmanager所在的位置,然后在Prometheus配置中创建警报规则,最后配置Alertmanager来处理警报并发送给接收者(邮件,webhook、slack等)。
地址1:https://prometheus.io/download/
地址2:https://github.com/prometheus/alertmanager/releases
设置告警和通知的主要步骤如下:
配置Prometheus与Alertmanager通信
# vi prometheus.yml
alerting:
alertmanagers:
- static_configs:
- targets:
- 127.0.0.1:9093
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
# vi prometheus.yml
rule_files:
- "rules/*.yml"
# vi rules/node.yml
groups:
- name: example# 报警规则组名称
rules:
# 任何实例5分钟内无法访问发出告警
- alert: InstanceDown
expr: up == 0
for: 5m#持续时间 , 表示持续一分钟获取不到信息,则触发报警
labels:
severity: page# 自定义标签
annotations:
summary: "Instance {{ $labels.instance }} down"# 自定义摘要
description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 5 minutes."# 自定义具体描述
一旦这些警报存储在Alertmanager,它们可能处于以下任何状态:
这样目的是多次判断失败才发告警,减少邮件。
route
属性用来设置报警的分发策略,它是一个树状结构,按照深度优先从左向右的顺序进行匹配。
route:
receiver: 'default-receiver'
group_wait: 30s
group_interval: 5m
repeat_interval: 4h
group_by: [cluster, alertname]
# 所有不匹配以下子路由的告警都将保留在根节点,并发送到“default-receiver”
routes:
# 所有service=mysql或者service=cassandra的告警分配到数据库接收端
- receiver: 'database-pager'
group_wait: 10s
match_re:
service: mysql|cassandra
# 所有带有team=frontend标签的告警都与此子路由匹配
# 它们是按产品和环境分组的,而不是集群
- receiver: 'frontend-pager'
group_by: [product, environment]
match:
team: frontend
group_by:报警分组依据
group_wait:为一个组发送通知的初始等待时间,默认30s
group_interval:在发送新告警前的等待时间。通常5m或以上
repeat_interval:发送重复告警的周期。如果已经发送了通知,再次发送之前需要等待多长时间。通常3小时或以上
主要处理流程:
告警面临最大问题,是警报太多,相当于狼来了的形式。收件人很容易麻木,不再继续理会。关键的告警常常被淹没。在一问题中,alertmanger在一定程度上得到很好解决。
Prometheus成功的把一条告警发给了Altermanager,而Altermanager并不是简简单单的直接发送出去,这样就会导致告警信息过多,重要告警被淹没。所以需要对告警做合理的收敛。
告警收敛手段:
分组(group):将类似性质的警报分类为单个通知
抑制(Inhibition):当警报发出后,停止重复发送由此警报引发的其他警报
静默(Silences):是一种简单的特定时间静音提醒的机制
报警处理流程如下:
# cat rules/general.yml
groups:
- name: general.rules
rules:
- alert: InstanceDown
expr: up == 0
for: 2m
labels:
severity: error
annotations:
summary: "Instance {{ $labels.instance }} 停止工作"
description: "{{ $labels.instance }}: job {{ $labels.job }} 已经停止5分钟以上."
# cat rules/node.yml
groups:
- name: node.rules
rules:
- alert: NodeFilesystemUsage
expr: 100 - (node_filesystem_free_bytes{fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 80
for: 2m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: {{$labels.mountpoint }} 分区使用过高"
description: "{{$labels.instance}}: {{$labels.mountpoint }} 分区使用大于 80% (当前值: {{ $value }})"
- alert: NodeMemoryUsage
expr: 100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 100 > 80
for: 2m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: 内存使用过高"
description: "{{$labels.instance}}: 内存使用大于 80% (当前值: {{ $value }})"
- alert: NodeCPUUsage
expr: 100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance) * 100) > 80
for: 2m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: CPU使用过高"
description: "{{$labels.instance}}: CPU使用大于 80% (当前值: {{ $value }})"
# cat rules/reload.yml
groups:
- name: prometheus.rules
rules:
- alert: AlertmanagerReloadFailed
expr: alertmanager_config_last_reload_successful == 0
for: 10m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: Alertmanager配置重新加载失败"
description: "{{$labels.instance}}: Alertmanager配置重新加载失败"
- alert: PrometheusReloadFailed
expr: prometheus_config_last_reload_successful == 0
for: 10m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: Prometheus配置重新加载失败"
description: "{{$labels.instance}}: Prometheus配置重新加载失败"