前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >小白学PyTorch | 12 SENet详解及PyTorch实现

小白学PyTorch | 12 SENet详解及PyTorch实现

作者头像
机器学习炼丹术
发布2020-09-22 10:17:08
1.1K0
发布2020-09-22 10:17:08
举报
文章被收录于专栏:机器学习炼丹术

参考目录:

  • 1 网络结构
  • 2 参数量分析
  • 3 PyTorch实现与解析

上一节课讲解了MobileNet的一个DSC深度可分离卷积的概念,希望大家可以在实际的任务中使用这种方法,现在再来介绍EfficientNet的另外一个基础知识,Squeeze-and-Excitation Networks压缩-激活网络

1 网络结构

可以看出来,左边的图是一个典型的Resnet的结构,Resnet这个残差结构特征图求和而不是通道拼接,这一点可以注意一下

这个SENet结构式融合在残差网络上的,我来分析一下上图右边的结构:

  • 输出特征图假设shape是
W \times H \times C

的;

  • 一般的Resnet就是这个特征图经过残差网络的基本组块,得到了输出特征图,然后输入特征图和输入特征图通过残差结构连在一起(通过加和的方式连在一起);
  • SE模块就是输出特征图先经过一个全局池化层,shape从
W \times H \times C

变成了

1 \times 1 \times C

这个就变成了一个全连接层的输入啦

  • 压缩Squeeze:先放到第一个全连接层里面,输入
C

个元素,输出

\frac{C}{r}

,r是一个事先设置的参数;

  • 激活Excitation:在接上一个全连接层,输入是
\frac{C}{r}

个神经元,输出是

C

个元素,实现激活的过程;

  • 现在我们有了一个
C

个元素的经过了两层全连接层的输出,这个C个元素,刚好表示的是原来输出特征图

W \times H \times C

中C个通道的一个权重值,所以我们让C个通道上的像素值分别乘上全连接的C个输出,这个步骤在图中称为Scale而这个调整过特征图每一个通道权重的特征图是SE-Resnet的输出特征图,之后再考虑残差接连的步骤。

在原文论文中还有另外一个结构图,供大家参考:

2 参数量分析

每一个卷积层都增加了额外的两个全连接层,不够好在全连接层的参数非常小,所以直观来看应该整体不会增加很多的计算量。Resnet50的参数量为25M的大小,增加了SE模块,增加了2.5M的参数量,所以大概增加了10%左右,而且这2.5M的参数主要集中在final stage的se模块,因为在最后一个卷积模块中,特征图拥有最大的通道数,所以这个final stage的参数量占据了增加的2.5M参数的96%。

这里放一个几个网络结构的对比:

3 PyTorch实现与解析

先上完整版的代码,大家可以复制本地IDE跑一跑,如果代码有什么问题可以联系我:

代码语言:javascript
复制
import torch
import torch.nn as nn
import torch.nn.functional as F

class PreActBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super(PreActBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)

        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))

        # Squeeze
        w = F.avg_pool2d(out, out.size(2))
        w = F.relu(self.fc1(w))
        w = F.sigmoid(self.fc2(w))
        # Excitation
        out = out * w

        out += shortcut
        return out


class SENet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(SENet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block,  64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def SENet18():
    return SENet(PreActBlock, [2,2,2,2])


net = SENet18()
y = net(torch.randn(1,3,32,32))
print(y.size())
print(net)

输出和注解我都整理了一下:

- END -

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习炼丹术 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 网络结构
  • 2 参数量分析
  • 3 PyTorch实现与解析
相关产品与服务
文件存储
文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档