前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >scrapy爬虫框架和selenium的使用:对优惠券推荐网站数据LDA文本挖掘

scrapy爬虫框架和selenium的使用:对优惠券推荐网站数据LDA文本挖掘

作者头像
拓端
发布2020-09-04 14:26:45
6940
发布2020-09-04 14:26:45
举报
文章被收录于专栏:拓端tecdat

原文链接:http://tecdat.cn/?p=12203

介绍

每个人都喜欢省钱。我们都试图充分利用我们的资金,有时候这是最简单的事情,可以造成最大的不同。长期以来,优惠券一直被带到超市拿到折扣,但使用优惠券从未如此简单,这要归功于Groupon。

Groupon是一个优惠券推荐服务,可以在您附近的餐馆和商店广播电子优惠券。其中一些优惠券可能非常重要,特别是在计划小组活动时,因为折扣可以高达60%。

数据

这些数据是从Groupon网站的纽约市区域获得的。网站的布局分为所有不同groupon的专辑搜索,然后是每个特定groupon的深度页面。网站外观如下所示:

两个页面的布局都不是动态的,所以建立了一个自定义scrapy ,以便快速浏览所有的页面并检索要分析的信息。然而,评论,重要的信息,通过JavaScript呈现和加载 。Selenium脚本使用从scrapy获取的groupons的URL,实质上模仿了人类点击用户注释部分中的“next”按钮。

代码语言:javascript
复制

for url in url_list.url[0:50]:
try:
driver.get(url)
time.sleep(2)
#Close Any Popup That Occurs#
# if(driver.switch_to_alert()):
try:
close = driver.find_element_by_xpath('//a[@id="nothx"]')
close.click()
except:
pass
time.sleep(1)
try:
link = driver.find_element_by_xpath('//div[@id="all-tips-link"]')
driver.execute_script("arguments[0].click();", link)
time.sleep(2)
except:
next
i = 1
print(url)
while True:
try:
time.sleep(2)
print("Scraping Page: " + str(i))
reviews = driver.find_elements_by_xpath('//div[@class="tip-item classic-tip"]')
next_bt = driver.find_element_by_link_text('Next')
for review in reviews[3:]:
review_dict = {}
content = review.find_element_by_xpath('.//div[@class="twelve columns tip-text ugc-ellipsisable-tip ellipsis"]').text
author = review.find_element_by_xpath('.//div[@class="user-text"]/span[@class="tips-reviewer-name"]').text
date = review.find_element_by_xpath('.//div[@class="user-text"]/span[@class="reviewer-reviewed-date"]').text
review_dict['author'] = author
review_dict['date'] = date
review_dict['content'] = content
review_dict['url'] = url


writer.writerow(review_dict.values())
i += 1
next_bt.click()
except:
break
except:
next


csv_file.close()
driver.close()

从每个组中检索的数据如下所示。

Groupon标题

分类信息

交易功能位置

总评分数网址

作者日期

评论网址

大约有89,000个用户评论。从每个评论中检索的数据如下所示。

代码语言:javascript
复制

print(all_groupon_reviews[all_groupon_reviews.content.apply(lambda x: isinstance(x, float))])
indx = [10096]
all_groupon_reviews.content.iloc[indx]
author       date content  \
10096  Patricia D. 2017-02-15     NaN
15846       Pat H. 2016-09-24     NaN
19595      Tova F. 2012-12-20     NaN
40328   Phyllis H. 2015-06-28     NaN
80140     Andre A. 2013-03-26     NaN


url  year  month  day
10096  https://www.groupon.com/deals/statler-grill-9  2017      2   15
15846         https://www.groupon.com/deals/impark-3  2016      9   24
19595   https://www.groupon.com/deals/hair-bar-nyc-1  2012     12   20
40328     https://www.groupon.com/deals/kumo-sushi-1  2015      6   28
80140  https://www.groupon.com/deals/woodburybus-com  2013      3   26

探索性数据分析

一个有趣的发现是在过去的几年里,群体的使用已经大大增加了。我们通过检查评论提供的日期来发现这一点。看下面的图像,其中x轴表示月/年和y轴,表示计数,这个结论变得明显。最后的小幅下滑是由于当时的一些小组可能是季节性的。

一个有趣的发现是在过去的几年里,群体的使用已经大大增加了。我们通过检查评论提供的日期来发现这一点。看下面的图像,其中x轴表示月/年和y轴,表示计数。最后的小幅下滑是由于当时的一些小组可能是季节性的。

代码语言:javascript
复制

pie_chart_df = Groupons.groupby('categories').agg('count')


plt.rcParams['figure.figsize'] = (8,8)


sizes = list(pie_chart_df.mini_info)
labels = pie_chart_df.index
plt.pie(sizes, shadow=True, labels = labels, autopct='%1.1f%%', startangle=140)
# plt.legend(labels, loc="best")
plt.axis('equal')

最后,由于大部分数据是通过文本:价格(原价),导出了一个正则表达式来解析价格信息,以及它们提供的交易数量。该信息显示在以下条形图中:

代码语言:javascript
复制



objects = list(offer_counts.keys())
y = list(offer_counts.values())
tst = np.arange(len(y))


plt.bar(tst,y, align = 'center')
plt.xticks(tst, objects)
plt.ylabel('Total Number of Groupons')
plt.xlabel('Different Discounts Offers')
plt.show()
代码语言:javascript
复制




plt.ylabel('Number of Offerings')
plt.xticks(ind, ('Auto', 'Beauty', 'Food', 'Health', 'Home', 'Personal', 'Things'))
plt.xlabel('Category of Groupon')
plt.legend((p0[0], p1[0], p2[0], p3[0], p4[0], p5[0], p6[0], p7[0], p10[0]), ('0', '1', '2', '3', '4', '5', '6', '7', '10'))
代码语言:javascript
复制
代码语言:javascript
复制
sns.violinplot(data = savings_dataframe)
代码语言:javascript
复制

最后,利用用户评论数据生成一个文字云:

代码语言:javascript
复制

plt.rcParams['figure.figsize'] = (20,20)
wordcloud = WordCloud(width=4000, height=2000, max_words=150, background_color='white').generate(text)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")

主题建模

为了进行主题建模,使用的两个最重要的软件包是gensimspacy。创建一个语料库的第一步是删除所有停用词,如“,”等。最后创造trigrams。

选择的模型是Latent Dirichlet Allocation,因为它能够区分来自不同文档的主题,并且存在一个可以清晰有效地将结果可视化的包。由于该方法是无监督的,因此必须事先选择主题数量,在模型的25次连续迭代中最优数目为3。结果如下:

上面的可视化是将主题投影到两个组件上,其中相似的主题会更接近,而不相似的主题会更远。右边的单词是组成每个主题的单词,lambda参数控制单词的排他性。0的lambda表示每个主题周围的最排斥的单词,而1的lambda表示每个主题周围的最频繁的单词。

第一个话题代表服务的质量和接待。第二个话题有描述锻炼和身体活动的词语。最后,第三个话题有属于食品类的词语。

结论

主题建模是无监督学习的一种形式,这个项目的范围是简要地检查在基础词语背后发现模式的功能。虽然我们认为我们对某些产品/服务的评论是独一无二的,但是这个模型清楚地表明,实际上,某些词汇在整个人群中被使用。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原文链接:http://tecdat.cn/?p=12203
  • 介绍
  • 数据
  • 主题建模
  • 结论
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档