在Android中,当我们谈到 布局优化、卡顿优化 时,通常都知道 需要减少布局层级、减少主线程耗时操作,这样可以减少丢帧。如果丢帧比较严重,那么界面可能会有明显的卡顿感。我们知道 通常手机刷新是每秒60次,即每隔16.6ms刷新一次。 问题来了:
小朋友,你是否有很多问号?
本文介绍的内容会详细解释以上问题,并在最后给解答。稳住,别慌~
在一个典型的显示系统中,一般包括CPU、GPU、Display三个部分, CPU负责计算帧数据,把计算好的数据交给GPU,GPU会对图形数据进行渲染,渲染好后放到buffer(图像缓冲区)里存起来,然后Display(屏幕或显示器)负责把buffer里的数据呈现到屏幕上。如下图:
单缓存,从缓存映射到屏幕
明显看出画面错位的位置,这就是画面撕裂。
屏幕刷新频是固定的,比如每16.6ms从buffer取数据显示完一帧,理想情况下帧率和刷新频率保持一致,即每绘制完成一帧,显示器显示一帧。但是CPU/GPU写数据是不可控的,所以会出现buffer里有些数据根本没显示出来就被重写了,即buffer里的数据可能是来自不同的帧的, 当屏幕刷新时,此时它并不知道buffer的状态,因此从buffer抓取的帧并不是完整的一帧画面,即出现画面撕裂。
简单说就是Display在显示的过程中,buffer内数据被CPU/GPU修改,导致画面撕裂。
那咋解决画面撕裂呢?答案是使用 双缓存。
由于图像绘制和屏幕读取 使用的是同个buffer,所以屏幕刷新时可能读取到的是不完整的一帧画面。
双缓存,让绘制和显示器拥有各自的buffer:GPU 始终将完成的一帧图像数据写入到 Back Buffer,而显示器使用 Frame Buffer,当屏幕刷新时,Frame Buffer 并不会发生变化,当Back buffer准备就绪后,它们才进行交换。如下图:
双缓存,CPU/GPU写数据到Back Buffer,显示器从Frame Buffer取数据
问题又来了:什么时候进行两个buffer的交换呢?
假如是 Back buffer准备完成一帧数据以后就进行,那么如果此时屏幕还没有完整显示上一帧内容的话,肯定是会出问题的。看来只能是等到屏幕处理完一帧数据后,才可以执行这一操作了。
当扫描完一个屏幕后,设备需要重新回到第一行以进入下一次的循环,此时有一段时间空隙,称为VerticalBlanking Interval(VBI)。那,这个时间点就是我们进行缓冲区交换的最佳时间。因为此时屏幕没有在刷新,也就避免了交换过程中出现 screen tearing的状况。
VSync(垂直同步)是VerticalSynchronization的简写,它利用VBI时期出现的vertical sync pulse(垂直同步脉冲)来保证双缓冲在最佳时间点才进行交换。另外,交换是指各自的内存地址,可以认为该操作是瞬间完成。
所以说V-sync这个概念并不是Google首创的,它在早年的PC机领域就已经出现了。
具体到Android中,在Android4.1之前,屏幕刷新也遵循 上面介绍的 双缓存+VSync 机制。如下图:
双缓存会在VSync脉冲时交换,但CPU/GPU绘制是随机的
以时间的顺序来看下将会发生的过程:
所以总的来说,就是屏幕平白无故地多显示了一次第1帧。
原因是 第2帧的CPU/GPU计算 没能在VSync信号到来前完成 。
我们知道,双缓存的交换 是在Vsyn到来时进行,交换后屏幕会取Frame buffer内的新数据,而实际 此时的Back buffer 就可以供GPU准备下一帧数据了。如果 Vsyn到来时 CPU/GPU就开始操作的话,是有完整的16.6ms的,这样应该会基本避免jank的出现了(除非CPU/GPU计算超过了16.6ms)。 那如何让 CPU/GPU计算在 Vsyn到来时进行呢?
为了优化显示性能,Google在Android 4.1系统中对Android Display系统进行了重构,实现了Project Butter(黄油工程):系统在收到VSync pulse后,将马上开始下一帧的渲染。即一旦收到VSync通知(16ms触发一次),CPU和GPU 才立刻开始计算然后把数据写入buffer。如下图:
VSync脉冲到来:双缓存交换,且开始CPU/GPU绘制 CPU/GPU根据VSYNC信号同步处理数据,可以让CPU/GPU有完整的16ms时间来处理数据,减少了jank。
一句话总结,VSync同步使得CPU/GPU充分利用了16.6ms时间,减少jank。
问题又来了,如果界面比较复杂,CPU/GPU的处理时间较长 超过了16.6ms呢?如下图:
虽然CPU/GPU开始在VSync,但超过16.6ms
为什么 CPU 不能在第二个 16ms 处理绘制工作呢?
原因是只有两个 buffer,Back buffer正在被GPU用来处理B帧的数据, Frame buffer的内容用于Display的显示,这样两个buffer都被占用,CPU 则无法准备下一帧的数据。那么,如果再提供一个buffer,CPU、GPU 和显示设备都能使用各自的buffer工作,互不影响。
三缓存就是在双缓冲机制基础上增加了一个 Graphic Buffer 缓冲区,这样可以最大限度的利用空闲时间,带来的坏处是多使用的一个 Graphic Buffer 所占用的内存。
三缓存
三缓冲有效利用了等待vysnc的时间,减少了jank,但是带来了延迟。 所以,是不是 Buffer 越多越好呢?这个是否定的,Buffer 正常还是两个,当出现 Jank 后三个足以。
以上就是Android屏幕刷新的原理了。
上面讲到,Google在Android 4.1系统中对Android Display系统进行了优化:在收到VSync pulse后,将马上开始下一帧的渲染。即一旦收到VSync通知,CPU和GPU就立刻开始计算然后把数据写入buffer。本节就来讲 "drawing with VSync" 的实现——Choreographer。
学习 Choreographer 可以帮助理解 每帧运行的原理,也可加深对 Handler机制、View绘制流程的理解,这样再去做UI优化、卡顿优化,思路会更清晰。
好了,下面开始源码分析了~
在《Window和WindowManager》、《Activity的启动过程详解》中介绍过,Activity启动 走完onResume方法后,会进行window的添加。window添加过程会 调用ViewRootImpl的setView()方法,setView()方法会调用requestLayout()方法来请求绘制布局,requestLayout()方法内部又会走到scheduleTraversals()方法,最后会走到performTraversals()方法,接着到了我们熟知的测量、布局、绘制三大流程了。
另外,查看源码发现,当我们使用 ValueAnimator.start()、View.invalidate()时,最后也是走到ViewRootImpl的scheduleTraversals()方法。(View.invalidate()内部会循环获取ViewParent直到ViewRootImpl的invalidateChildInParent()方法,然后走到scheduleTraversals(),可自行查看源码 )
即 所有UI的变化都是走到ViewRootImpl的scheduleTraversals()方法。
那么问题又来了,scheduleTraversals() 到 performTraversals() 中间 经历了什么呢?是立刻执行吗?答案很显然是否定的,根据我们上面的介绍,在VSync信号到来时才会执行绘制,即performTraversals()方法。下面来瞅瞅这是如何实现的:
//ViewRootImpl.java
void scheduleTraversals() {
if (!mTraversalScheduled) {
//此字段保证同时间多次更改只会刷新一次,例如TextView连续两次setText(),也只会走一次绘制流程
mTraversalScheduled = true;
//添加同步屏障,屏蔽同步消息,保证VSync到来立即执行绘制
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
//mTraversalRunnable是TraversalRunnable实例,最终走到run(),也即doTraversal();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
final class TraversalRunnable implements Runnable {
@Override
public void run() {
doTraversal();
}
}
final TraversalRunnable mTraversalRunnable = new TraversalRunnable();
void doTraversal() {
if (mTraversalScheduled) {
mTraversalScheduled = false;
//移除同步屏障
mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
...
//开始三大绘制流程
performTraversals();
...
}
}
主要有以下逻辑:
接下来,就是分析的重点——Choreographer。我们先看它的实例mChoreographer,是在ViewRootImpl的构造方法内使用Choreographer.getInstance()创建:
Choreographer mChoreographer;
//ViewRootImpl实例是在添加window时创建
public ViewRootImpl(Context context, Display display) {
...
mChoreographer = Choreographer.getInstance();
...
}
我们先来看看Choreographer.getInstance():
public static Choreographer getInstance() {
return sThreadInstance.get();
}
private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
//当前线程要有looper,Choreographer实例需要传入
throw new IllegalStateException("The current thread must have a looper!");
}
Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP);
if (looper == Looper.getMainLooper()) {
mMainInstance = choreographer;
}
return choreographer;
}
};
看到这里 如你对Handler机制中looper比较熟悉的话,应该知道 Choreographer和Looper一样 是线程单例的。且当前线程要有looper,Choreographer实例需要传入。接着看看Choreographer构造方法:
private Choreographer(Looper looper, int vsyncSource) {
mLooper = looper;
//使用当前线程looper创建 mHandler
mHandler = new FrameHandler(looper);
//USE_VSYNC 4.1以上默认是true,表示 具备接受VSync的能力,这个接受能力就是FrameDisplayEventReceiver
mDisplayEventReceiver = USE_VSYNC
? new FrameDisplayEventReceiver(looper, vsyncSource)
: null;
mLastFrameTimeNanos = Long.MIN_VALUE;
// 计算一帧的时间,Android手机屏幕是60Hz的刷新频率,就是16ms
mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());
// 创建一个链表类型CallbackQueue的数组,大小为5,
//也就是数组中有五个链表,每个链表存相同类型的任务:输入、动画、遍历绘制等任务(CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL)
mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++) {
mCallbackQueues[i] = new CallbackQueue();
}
// b/68769804: For low FPS experiments.
setFPSDivisor(SystemProperties.getInt(ThreadedRenderer.DEBUG_FPS_DIVISOR, 1));
}
代码中都有注释,创建了一个mHandler、VSync事件接收器mDisplayEventReceiver、任务链表数组mCallbackQueues。FrameHandler、FrameDisplayEventReceiver、CallbackQueue后面会一一说明。
回头看mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null)方法,注意到第一个参数是CALLBACK_TRAVERSAL,表示回调任务的类型,共有以下5种类型:
//输入事件,首先执行
public static final int CALLBACK_INPUT = 0;
//动画,第二执行
public static final int CALLBACK_ANIMATION = 1;
//插入更新的动画,第三执行
public static final int CALLBACK_INSETS_ANIMATION = 2;
//绘制,第四执行
public static final int CALLBACK_TRAVERSAL = 3;
//提交,最后执行,
public static final int CALLBACK_COMMIT = 4;
五种类型任务对应存入对应的CallbackQueue中,每当收到 VSYNC 信号时,Choreographer 将首先处理 INPUT 类型的任务,然后是 ANIMATION 类型,最后才是 TRAVERSAL 类型。
postCallback()内部调用postCallbackDelayed(),接着又调用postCallbackDelayedInternal(),来瞅瞅:
private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
...
synchronized (mLock) {
// 当前时间
final long now = SystemClock.uptimeMillis();
// 加上延迟时间
final long dueTime = now + delayMillis;
//取对应类型的CallbackQueue添加任务
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
if (dueTime <= now) {
//立即执行
scheduleFrameLocked(now);
} else {
//延迟运行,最终也会走到scheduleFrameLocked()
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}
首先取对应类型的CallbackQueue添加任务,action就是mTraversalRunnable,token是null。CallbackQueue的addCallbackLocked()就是把 dueTime、action、token组装成CallbackRecord后 存入CallbackQueue的下一个节点,具体代码比较简单,不再跟进。
然后注意到如果没有延迟会执行scheduleFrameLocked()方法,有延迟就会使用 mHandler发送MSG_DO_SCHEDULE_CALLBACK消息,并且注意到 使用msg.setAsynchronous(true)把消息设置成异步,这是因为前面设置了同步屏障,只有异步消息才会执行。我们看下mHandler的对这个消息的处理:
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
// 执行doFrame,即绘制过程
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
//申请VSYNC信号,例如当前需要绘制任务时
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
//需要延迟的任务,最终还是执行上述两个事件
doScheduleCallback(msg.arg1);
break;
}
}
}
直接使用doScheduleCallback方法,看看:
void doScheduleCallback(int callbackType) {
synchronized (mLock) {
if (!mFrameScheduled) {
final long now = SystemClock.uptimeMillis();
if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) {
scheduleFrameLocked(now);
}
}
}
}
发现也是走到这里,即延迟运行最终也会走到scheduleFrameLocked(),跟进看看:
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
//开启了VSYNC
if (USE_VSYNC) {
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame on vsync.");
}
//当前执行的线程,是否是mLooper所在线程
if (isRunningOnLooperThreadLocked()) {
//申请 VSYNC 信号
scheduleVsyncLocked();
} else {
// 若不在,就用mHandler发送消息到原线程,最后还是调用scheduleVsyncLocked方法
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);//异步
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
// 如果未开启VSYNC则直接doFrame方法(4.1后默认开启)
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);//异步
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}
到这里,FrameHandler的作用很明显里了:发送异步消息(因为前面设置了同步屏障)。有延迟的任务发延迟消息、不在原线程的发到原线程、没开启VSYNC的直接走 doFrame 方法取执行绘制。
好了, 接着就看 scheduleVsyncLocked 方法是如何申请 VSYNC 信号的。猜测肯定申请 VSYNC 信号后,信号到来时也是走doFrame() 方法,doFrame()后面再看。先跟进scheduleVsyncLocked():
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
很简单,调用mDisplayEventReceiver的scheduleVsync()方法,mDisplayEventReceiver是Choreographer构造方法中创建,是FrameDisplayEventReceiver 的实例。FrameDisplayEventReceiver是 DisplayEventReceiver 的子类,DisplayEventReceiver 是一个 abstract class:
public DisplayEventReceiver(Looper looper, int vsyncSource) {
if (looper == null) {
throw new IllegalArgumentException("looper must not be null");
}
mMessageQueue = looper.getQueue();
// 注册VSYNC信号监听者
mReceiverPtr = nativeInit(new WeakReference<DisplayEventReceiver>(this), mMessageQueue,
vsyncSource);
mCloseGuard.open("dispose");
}
在 DisplayEventReceiver 的构造方法会通过 JNI 创建一个 IDisplayEventConnection 的 VSYNC 的监听者。
FrameDisplayEventReceiver的scheduleVsync()就是在 DisplayEventReceiver中:
public void scheduleVsync() {
if (mReceiverPtr == 0) {
Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
+ "receiver has already been disposed.");
} else {
// 申请VSYNC中断信号,会回调onVsync方法
nativeScheduleVsync(mReceiverPtr);
}
}
那么scheduleVsync()就是使用native方法nativeScheduleVsync()去申请VSYNC信号。这个native方法就看不了了,只需要知道VSYNC信号的接受回调是onVsync(),我们直接看onVsync():
/**
* 接收到VSync脉冲时 回调
* @param timestampNanos VSync脉冲的时间戳
* @param physicalDisplayId Stable display ID that uniquely describes a (display, port) pair.
* @param frame 帧号码,自增
*/
@UnsupportedAppUsage
public void onVsync(long timestampNanos, long physicalDisplayId, int frame) {
}
具体实现是在FrameDisplayEventReceiver中:
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
implements Runnable {
private boolean mHavePendingVsync;
private long mTimestampNanos;
private int mFrame;
public FrameDisplayEventReceiver(Looper looper, int vsyncSource) {
super(looper, vsyncSource);
}
@Override
public void onVsync(long timestampNanos, long physicalDisplayId, int frame) {
// Post the vsync event to the Handler.
// The idea is to prevent incoming vsync events from completely starving
// the message queue. If there are no messages in the queue with timestamps
// earlier than the frame time, then the vsync event will be processed immediately.
// Otherwise, messages that predate the vsync event will be handled first.
long now = System.nanoTime();
if (timestampNanos > now) {
Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
+ " ms in the future! Check that graphics HAL is generating vsync "
+ "timestamps using the correct timebase.");
timestampNanos = now;
}
if (mHavePendingVsync) {
Log.w(TAG, "Already have a pending vsync event. There should only be "
+ "one at a time.");
} else {
mHavePendingVsync = true;
}
mTimestampNanos = timestampNanos;
mFrame = frame;
//将本身作为runnable传入msg, 发消息后 会走run(),即doFrame(),也是异步消息
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
}
onVsync()中,将接收器本身作为runnable传入异步消息msg,并使用mHandler发送msg,最终执行的就是doFrame()方法了。
注意一点是,onVsync()方法中只是使用mHandler发送消息到MessageQueue中,不一定是立刻执行,如何MessageQueue中前面有较为耗时的操作,那么就要等完成,才会执行本次的doFrame()。
和上面猜测一样,申请VSync信号接收到后确实是走 doFrame()方法,那么就来看看Choreographer的doFrame():
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
if (!mFrameScheduled) {
return; // no work to do
}
...
// 预期执行时间
long intendedFrameTimeNanos = frameTimeNanos;
startNanos = System.nanoTime();
// 超时时间是否超过一帧的时间(这是因为MessageQueue虽然添加了同步屏障,但是还是有正在执行的同步任务,导致doFrame延迟执行了)
final long jitterNanos = startNanos - frameTimeNanos;
if (jitterNanos >= mFrameIntervalNanos) {
// 计算掉帧数
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
// 掉帧超过30帧打印Log提示
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
...
frameTimeNanos = startNanos - lastFrameOffset;
}
...
mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
// Frame标志位恢复
mFrameScheduled = false;
// 记录最后一帧时间
mLastFrameTimeNanos = frameTimeNanos;
}
try {
// 按类型顺序 执行任务
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_INSETS_ANIMATION, frameTimeNanos);
mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
AnimationUtils.unlockAnimationClock();
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
上面都有注释了很好理解,接着看任务的具体执行doCallbacks 方法:
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
final long now = System.nanoTime();
// 根据指定的类型CallbackkQueue中查找到达执行时间的CallbackRecord
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(now / TimeUtils.NANOS_PER_MS);
if (callbacks == null) {
return;
}
mCallbacksRunning = true;
//提交任务类型
if (callbackType == Choreographer.CALLBACK_COMMIT) {
final long jitterNanos = now - frameTimeNanos;
if (jitterNanos >= 2 * mFrameIntervalNanos) {
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos
+ mFrameIntervalNanos;
if (DEBUG_JANK) {
Log.d(TAG, "Commit callback delayed by " + (jitterNanos * 0.000001f)
+ " ms which is more than twice the frame interval of "
+ (mFrameIntervalNanos * 0.000001f) + " ms! "
+ "Setting frame time to " + (lastFrameOffset * 0.000001f)
+ " ms in the past.");
mDebugPrintNextFrameTimeDelta = true;
}
frameTimeNanos = now - lastFrameOffset;
mLastFrameTimeNanos = frameTimeNanos;
}
}
}
try {
// 迭代执行队列所有任务
for (CallbackRecord c = callbacks; c != null; c = c.next) {
// 回调CallbackRecord的run,其内部回调Callback的run
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
//回收CallbackRecord
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
}
}
主要内容就是取对应任务类型的队列,遍历队列执行所有任务,执行任务是 CallbackRecord的 run 方法:
private static final class CallbackRecord {
public CallbackRecord next;
public long dueTime;
public Object action; // Runnable or FrameCallback
public Object token;
@UnsupportedAppUsage
public void run(long frameTimeNanos) {
if (token == FRAME_CALLBACK_TOKEN) {
// 通过postFrameCallback 或 postFrameCallbackDelayed,会执行这里
((FrameCallback)action).doFrame(frameTimeNanos);
} else {
//取出Runnable执行run()
((Runnable)action).run();
}
}
}
前面看到mChoreographer.postCallback传的token是null,所以取出action,就是Runnable,执行run(),这里的action就是 ViewRootImpl 发起的绘制任务mTraversalRunnable了,那么这样整个逻辑就闭环了。
那么 啥时候 token == FRAME_CALLBACK_TOKEN 呢?答案是Choreographer的postFrameCallback()方法:
public void postFrameCallback(FrameCallback callback) {
postFrameCallbackDelayed(callback, 0);
}
public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
if (callback == null) {
throw new IllegalArgumentException("callback must not be null");
}
//也是走到是postCallbackDelayedInternal,并且注意是CALLBACK_ANIMATION类型,
//token是FRAME_CALLBACK_TOKEN,action就是FrameCallback
postCallbackDelayedInternal(CALLBACK_ANIMATION,
callback, FRAME_CALLBACK_TOKEN, delayMillis);
}
public interface FrameCallback {
public void doFrame(long frameTimeNanos);
}
可以看到postFrameCallback()传入的是FrameCallback实例,接口FrameCallback只有一个doFrame()方法。并且也是走到postCallbackDelayedInternal,FrameCallback实例作为action传入,token则是FRAME_CALLBACK_TOKEN,并且任务是CALLBACK_ANIMATION类型。
Choreographer的postFrameCallback()通常用来计算丢帧情况,使用方式如下:
//Application.java
public void onCreate() {
super.onCreate();
//在Application中使用postFrameCallback
Choreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));
}
public class FPSFrameCallback implements Choreographer.FrameCallback {
private static final String TAG = "FPS_TEST";
private long mLastFrameTimeNanos = 0;
private long mFrameIntervalNanos;
public FPSFrameCallback(long lastFrameTimeNanos) {
mLastFrameTimeNanos = lastFrameTimeNanos;
mFrameIntervalNanos = (long)(1000000000 / 60.0);
}
@Override
public void doFrame(long frameTimeNanos) {
//初始化时间
if (mLastFrameTimeNanos == 0) {
mLastFrameTimeNanos = frameTimeNanos;
}
final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;
if (jitterNanos >= mFrameIntervalNanos) {
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
if(skippedFrames>30){
//丢帧30以上打印日志
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
}
mLastFrameTimeNanos=frameTimeNanos;
//注册下一帧回调
Choreographer.getInstance().postFrameCallback(this);
}
}
使用Choreographer的postCallback()、postFrameCallback() 作用理解:发送任务 存队列中,监听VSync信号,当前VSync到来时 会使用mHandler发送异步message,这个message的Runnable就是队列中的所有任务。
好了,Choreographer整个代码逻辑都讲完了,引用《Android 之 Choreographer 详细分析》的流程图:
Choreographer流程图,来自网络
最后来介绍下异步消息与同步屏障。
在Handler中,Message分为3种:同步消息、异步消息、同步屏障消息,他们三者都是Message,只是属性有些区别。
通常我们使用创建Handler方式如下:
public Handler() {
this(null, false);
}
注意到内部使用了两个两个参数的构造方法,其中第二个是false:
public Handler(@Nullable Callback callback, boolean async) {
...
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
//异步标志
mAsynchronous = async;
}
这个false就表示 非异步,即使用的是同步消息,mAsynchronous使用是在enqueueMessage()中:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
//将Handler赋值给Message的target变量
msg.target = this;
//mAsynchronous为false,为同步消息
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里如果mAsynchronous是true,就会使用msg.setAsynchronous(true)设置为异步消息。所以上面Choreographer中使用的都是异步消息。
postSyncBarrier()方法就是用来插入一个屏障到消息队列的,
//MessageQueue
public int postSyncBarrier() {
return postSyncBarrier(SystemClock.uptimeMillis());
}
private int postSyncBarrier(long when) {
synchronized (this) {
final int token = mNextBarrierToken++;
//注意这里 没有tartget赋值
final Message msg = Message.obtain();
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}
可以看到它很简单,从这个方法我们可以知道如下:
同步屏障消息 是如何 挡住普通消息来保证异步消息优先处理的?我们看看MessageQueue的next()方法:
//MessageQueue.java
Message next() {
...
for (;;) {
...
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// msg.target == null 就是同步屏障消息,那么只取异步消息
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
...
}
}
很简单,遍历消息队列时,发现了同步屏障消息,那么就只取异步消息了。
好了,相关知识终于讲完了。
页面静置,没有CPU/GPU绘制,后面屏幕展示的还是Frame buffer的数据
参考与感谢 android屏幕刷新显示机制 https://blog.csdn.net/litefish/article/details/53939882 Android图形显示系统(一) https://www.jianshu.com/p/424918260fa9?open_source=weibo_search Android 屏幕刷新机制 https://juejin.im/post/6844903585424097293 Android 之 Choreographer 详细分析 https://www.jianshu.com/p/86d00bbdaf60 Handler异步消息与同步屏障 https://www.jianshu.com/p/28fba43ac0b0