曾经的我还是太年轻了, 基础不扎实还自以为是, 看到位运算符一节就以为是逻辑运算, 结果跳过没看了, 漏了很多知识. 果然 LeetCode 没白刷呀, 接下来是总结.
参加运算的两个数据,按二进制位进行“与”运算。
运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;
即:两位同时为“1”,结果才为“1”,否则为0
例如:3&5 即 0000 0011& 0000 0101 = 00000001 因此,3&5的值得1。
另,负数按补码形式参加按位与运算。
“与运算”的特殊用途:
方法:找一个数,对应X要取的位,该数的对应位为1,其余位为零,此数与X进行“与运算”可以得到X中的指定位。
例:设X=10101110,取X的低4位,用 X & 0000 1111 = 00001110 即可得到; 还可用来取X的2、4、6位。
参加运算的两个对象,按二进制位进行“或”运算。
运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;
即: 参加运算的两个对象只要有一个为1,其值为1。
例如:3|5 即 00000011 | 0000 0101 = 00000111 因此,3|5的值得7。
另,负数按补码形式参加按位或运算。
“或运算”特殊作用:
方法:找到一个数,对应X要置1的位,该数的对应位为1,其余位为零。此数与X相或可使X中的某些位置1。
例:将X=10100000的低4位置1 ,用X | 0000 1111 = 1010 1111即可得到。
参加运算的两个数据,按二进制位进行“异或”运算。
运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0;
即:参加运算的两个对象,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。
“异或运算”的特殊作用:
下面重点说一下按位异或,异或其实就是不进位加法,如1+1=0,,0+0=0,1+0=1。
异或的几条性质:
异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A XOR B XOR B = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。 例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b 则以下三行表达式将互换他们的值:
a=a^b;
b=b^a;
a=a^b;
举例:
1-1000放在含有1001个元素的数组中,只有唯一的一个元素值重复,其它均只出现 一次。每个数组元素只能访问一次,设计一个算法,将它找出来;不用辅助存储空 间,能否设计一个算法实现?
解法一、显然已经有人提出了一个比较精彩的解法,将所有数加起来,减去1+2+…+1000的和。 这个算法已经足够完美了,相信出题者的标准答案也就是这个算法,唯一的问题是,如果数列过大,则可能会导致溢出。
解法二、异或就没有这个问题,并且性能更好。 将所有的数全部异或,得到的结果与1^2^3^…^1000的结果进行异或,得到的结果就是重复数。
将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。
例:a = a<< 2将a的二进制位左移2位,右补0,左移1位后a = a * 2;
若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。
将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。
操作数每右移一位,相当于该数除以2。
例如:a = a>> 2 将a的二进制位右移2位,
左补0 or 补1得看被移数是正还是负。
按位取反运算符:对数据的每个二进制位取反,即把1变为0,把0变为1 。~x 类似于 -x-1
例如: a = 0011 1100 (61) (~a ) 输出结果 -61 ,二进制解释: 1100 0011,在一个有符号二进制数的补码形式。
位运算符与赋值运算符结合,组成新的复合赋值运算符,它们是:
&= 例:a &=b 相当于a=a& b
|= 例:a |=b 相当于a=a |b
>>= 例:a >>=b 相当于a=a>> b
<<= 例:a<<=b 相当于a=a<< b
^= 例:a ^= b 相当于a=a^ b
运算规则:和前面讲的复合赋值运算符的运算规则相似。
如果两个不同长度的数据进行位运算时,系统会将二者按右端对齐,然后进行位运算。
以“与”运算为例说明如下:我们知道在C语言中long型占4个字节,int型占2个字节,如果一个long型数据与一个int型数据进行“与”运算,右端对齐后,左边不足的位依下面三种情况补足,
如:long a=123;int b=1;计算a& b。
如:long a=123;int b=-1;计算a& b。
如:long a=123;unsigned intb=1;计算a & b。