首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >18.opengl高级-立方体贴图

18.opengl高级-立方体贴图

作者头像
公号sumsmile
发布于 2020-07-13 08:36:40
发布于 2020-07-13 08:36:40
1.1K00
代码可运行
举报
运行总次数:0
代码可运行
一、原理

立方体贴图在《视觉计算基础》一书中,第14章的环境贴图中有讲到,常见的环境贴图有立方体环境贴图和球体环境贴图,根据实际场景来区分使用,比如你想创建一个四四方方的房间环境,就用立方体贴图。原理也不复杂,可以根据相机视角映射到对应的纹理像素上。

立方体贴图在游戏中很常见,用于创建一个封闭的逼真的游戏场景

立方体环境贴图取纹理像素

二、实现效果
  1. 游戏【上古卷轴3】天空盒

天空盒-上古卷轴

  1. 简单的天空盒实现

立方体贴图

三、实现步骤
1. 准备好立方体天空盒图片素材,一般是能拼成一个正方体的6张图片

天空盒素材

2. 创建立方体贴图

立方体贴图和其他纹理一样,区别是需要绑定到GL_TETURE_CUBE_MAP

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
unsigned int textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

立方体贴图包含6个纹理,所以需要调用glTexImage2D函数生成6个采样器,opengl专门设计了立方体贴图的六个面,可以从GL_TEXTURE_CUBE_MAP_POSITIVE_X开始遍历,其他的面的ID按顺序递增:

立方体贴图的六个面

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
int width, height, nrChannels;
unsigned char *data;  
for(unsigned int i = 0; i < textures_faces.size(); i++)
{
    data = stbi_load(textures_faces[i].c_str(), &width, &height, &nrChannels, 0);
    glTexImage2D(
        GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 
        0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data
    );
}

设定环绕和过滤方式,增加R维度,其实就是Z坐标方向

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

片元着色器中 纹理坐标和2D纹理采样不同,改成3向量,以一个向量方向来采样:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
in vec3 textureDir; // 代表3D纹理坐标的方向向量
uniform samplerCube cubemap; // 立方体贴图的纹理采样器

void main()
{             
    FragColor = texture(cubemap, textureDir);
}
2. 加载天空盒的6个纹理
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
unsigned int loadCubemap(vector<std::string> faces)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);
    glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

    int width, height, nrChannels;
    for (unsigned int i = 0; i < faces.size(); i++)
    {
        unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
        if (data)
        {
            glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 
                         0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data
            );
            stbi_image_free(data);
        }
        else
        {
            std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
            stbi_image_free(data);
        }
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

    return textureID;
}

以数组的方式准备好6个纹理图片

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
vector<std::string> faces
{
    "right.jpg",
    "left.jpg",
    "top.jpg",
    "bottom.jpg",
    "front.jpg",
    "back.jpg"
};
unsigned int cubemapTexture = loadCubemap(faces);

顶点着色器

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#version 330 core
layout (location = 0) in vec3 aPos;

out vec3 TexCoords;

uniform mat4 projection;
uniform mat4 view;

void main()
{
    TexCoords = aPos;
    gl_Position = projection * view * vec4(aPos, 1.0);
}

片元着色器

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#version 330 core
out vec4 FragColor;

in vec3 TexCoords;

uniform samplerCube skybox;

void main()
{    
    FragColor = texture(skybox, TexCoords);
}

注意,环境贴图的远近不做变化,营造出广阔的环境视觉效果,通过深度测试来实现,通过修改z轴的位子始终是和齐次坐标相同,这样转换成2维视觉坐标时,z/w = 1,会被前面的物体遮住,不会渲染出来。而且把环境贴图放到最后绘制,这样能节省不少计算量,主程序详细代码见文章末尾

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
void main()
{
    TexCoords = aPos;
    vec4 pos = projection * view * vec4(aPos, 1.0);
    gl_Position = pos.xyww;
}
四、环境映射-反射和折射实现

在天空盒的基础上,实现环境映射和反射也比较简单

反射

折射

1. 先说反射

修改两个着色器(纹理绑定到天空盒纹理)-->增加法向量属性-->相机position传给shader

反射

  1. 修改顶点shader和片元shader
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#version 330 core
out vec4 FragColor;

in vec3 Normal;
in vec3 Position;

uniform vec3 cameraPos;
uniform samplerCube skybox;

void main()
{
    // 计算观察向量
    vec3 I = normalize(Position - cameraPos);
    // 根据观察向量和 法向量 计算反射向量
    vec3 R = reflect(I, normalize(Normal));
    // 根据反射向量,从天空盒采样器中取出颜色
    FragColor = vec4(texture(skybox, R).rgb, 1.0);
}
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out vec3 Normal;
out vec3 Position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    Normal = mat3(transpose(inverse(model))) * aNormal;
    Position = vec3(model * vec4(aPos, 1.0));
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}
2. 折射

原理和反射相同,改下片元着色器中采样的算法就能实现,不做过多赘述,参考原教程: learnopengl-立方体贴图

折射

五、完整代码-天空盒

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include "Shader.h"
#include "camera.h"
#include "model.h"

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path);
unsigned int loadCubemap(vector<std::string> faces);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "天哥学opengl", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
//    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    // -------------------------
    Shader shader("1.colors.vs", "1.colors.fs");
    Shader skyboxShader("5.1.framebuffers_screen.vs", "5.1.framebuffers_screen.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float cubeVertices[] = {
        // positions          // texture Coords
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f
    };
  
    
    float skyboxVertices[] = {
        // positions
        -1.0f,  1.0f, -1.0f,
        -1.0f, -1.0f, -1.0f,
         1.0f, -1.0f, -1.0f,
         1.0f, -1.0f, -1.0f,
         1.0f,  1.0f, -1.0f,
        -1.0f,  1.0f, -1.0f,

        -1.0f, -1.0f,  1.0f,
        -1.0f, -1.0f, -1.0f,
        -1.0f,  1.0f, -1.0f,
        -1.0f,  1.0f, -1.0f,
        -1.0f,  1.0f,  1.0f,
        -1.0f, -1.0f,  1.0f,

         1.0f, -1.0f, -1.0f,
         1.0f, -1.0f,  1.0f,
         1.0f,  1.0f,  1.0f,
         1.0f,  1.0f,  1.0f,
         1.0f,  1.0f, -1.0f,
         1.0f, -1.0f, -1.0f,

        -1.0f, -1.0f,  1.0f,
        -1.0f,  1.0f,  1.0f,
         1.0f,  1.0f,  1.0f,
         1.0f,  1.0f,  1.0f,
         1.0f, -1.0f,  1.0f,
        -1.0f, -1.0f,  1.0f,

        -1.0f,  1.0f, -1.0f,
         1.0f,  1.0f, -1.0f,
         1.0f,  1.0f,  1.0f,
         1.0f,  1.0f,  1.0f,
        -1.0f,  1.0f,  1.0f,
        -1.0f,  1.0f, -1.0f,

        -1.0f, -1.0f, -1.0f,
        -1.0f, -1.0f,  1.0f,
         1.0f, -1.0f, -1.0f,
         1.0f, -1.0f, -1.0f,
        -1.0f, -1.0f,  1.0f,
         1.0f, -1.0f,  1.0f
    };
    
    
    // cube VAO
    unsigned int cubeVAO, cubeVBO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &cubeVBO);
    glBindVertexArray(cubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVertices), &cubeVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));

    
    // skybox VAO
    unsigned int skyboxVAO, skyboxVBO;
    glGenVertexArrays(1, &skyboxVAO);
    glGenBuffers(1, &skyboxVBO);
    glBindVertexArray(skyboxVAO);
    glBindBuffer(GL_ARRAY_BUFFER, skyboxVBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(skyboxVertices), &skyboxVertices, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

    // load textures
    // -------------
    unsigned int cubeTexture = loadTexture("resource/container.jpg");
    vector<std::string> faces
    {
        "resource/skybox/right.jpg",
        "resource/skybox/left.jpg",
        "resource/skybox/top.jpg",
        "resource/skybox/bottom.jpg",
        "resource/skybox/front.jpg",
        "resource/skybox/back.jpg"
    };
    
    unsigned int cubemapTexture = loadCubemap(faces);
    
    // shader configuration
    // --------------------
    shader.use();
    shader.setInt("texture1", 0);

    skyboxShader.use();
    skyboxShader.setInt("skybox", 0);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // make sure we clear the framebuffer's content
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        
        
        shader.use();
        glm::mat4 model = glm::mat4(1.0f);
        glm::mat4 view = camera.GetViewMatrix();
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        shader.setMat4("view", view);
        shader.setMat4("model", model);
        shader.setMat4("projection", projection);
        
        // cubes
        glBindVertexArray(cubeVAO);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, cubeTexture);
        glDrawArrays(GL_TRIANGLES, 0, 36);
        glBindVertexArray(0);
        
        glDepthFunc(GL_LEQUAL);
        skyboxShader.use();
        view = glm::mat4(glm::mat3(camera.GetViewMatrix()));
        skyboxShader.setMat4("view", view);
        skyboxShader.setMat4("projection", projection);
        //skybox cube
        glBindVertexArray(skyboxVAO);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, cubemapTexture);
        glDrawArrays(GL_TRIANGLES, 0, 36);
        glDepthFunc(GL_LESS);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &skyboxVAO);
    glDeleteBuffers(1, &cubeVBO);
    glDeleteBuffers(1, &skyboxVBO);
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    std::cout << "xpos : " << xpos << std::endl;
    std::cout << "ypos : " << ypos << std::endl;
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;
    
    std::cout << "xoffset : " << xoffset << std::endl;
    std::cout << "yoffset : " << yoffset << std::endl;
    
    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(yoffset);
}

// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}


unsigned int loadCubemap(vector<std::string> faces)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);
    glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
    
    int width, height, nrChannels;
    for (unsigned int i = 0; i < faces.size(); i++) {
        unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);

        if (data)
        {
            glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
            stbi_image_free(data);
        }
        else
        {
            std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
            stbi_image_free(data);
        }
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    }
    
    return textureID;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
Hadoop 用户入门指南:驾驭大数据的力量
我们正身处一个数据爆炸的时代。从社交媒体互动、电子商务交易到物联网传感器读数,数据正以前所未有的速度和规模增长。传统的数据处理工具(如单机数据库)在面对 TB 甚至 PB 级别的数据集时,往往力不从心,遭遇性能瓶颈、存储限制和高昂的成本。Hadoop 应运而生,作为一个开源的、可靠的、可扩展的分布式计算框架,它专为处理海量数据而设计,彻底改变了我们存储和分析大数据的方式。 本指南旨在为初学者提供扎实的起点,逐步掌握 Hadoop 的核心概念和实用技能。
熊猫钓鱼
2025/08/01
1290
Hadoop 用户入门指南:驾驭大数据的力量
Hadoop生态系统介绍「建议收藏」
Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有 可靠、高效、可伸缩的特点。
全栈程序员站长
2022/08/26
1.4K0
Hadoop生态系统介绍「建议收藏」
菜鸟的Hadoop快速入门「建议收藏」
大数据是一门概念,也是一门技术,是以Hadoop为代表的大数据平台框架上进行各种数据分析的技术。
全栈程序员站长
2022/09/02
5830
大数据学习之路05——Hadoop原理与架构解析
Hadoop 是 Apache 开源组织的一个分布式计算开源框架,是一个可以更容易开发和运行处理大规模数据的解决方案,它提供了一套分布式系统基础架构,允许使用简单的编程模型跨大型计算机的大型数据集进行分布式处理。
汪志宾
2019/05/24
8.9K0
大数据学习之路05——Hadoop原理与架构解析
hadoop生态圈各个组件简介
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。
全栈程序员站长
2022/08/31
1.2K0
hadoop生态圈各个组件简介
大数据Hadoop生态圈各个组件介绍(详情)
-coordination and management(协调与管理) -query(查询) -data piping(数据管道) -core hadoop(核心hadoop) -machine learning(机器学习) -nosql database(nosql数据库)
全栈程序员站长
2022/08/31
5.5K0
大数据Hadoop生态圈各个组件介绍(详情)
进击大数据系列(一):Hadoop 基本概念与生态介绍
大数据(big data),指的是在一定时间范围内不能以常规软件工具处理(存储和计算)的大而复杂的数据集。说白了大数据就是使用单台计算机没法在规定时间内处理完,或者压根就没法处理的数据集。
民工哥
2023/08/22
3K0
进击大数据系列(一):Hadoop 基本概念与生态介绍
【大数据】最新大数据学习路线(完整详细版,含整套教程)
大家好,又见面了,我是你们的朋友全栈君。 大数据学习路线 java(Java se,javaweb) Linux(shell,高并发架构,lucene,solr) Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume) 机器学习(R,mahout) Storm(Storm,kafka,redis) Spark(scala,spark,spark core,spark sql,spark streaming,spark
全栈程序员站长
2022/06/28
6280
大数据Hadoop生态圈介绍
Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。
全栈程序员站长
2022/08/25
1.1K0
大数据Hadoop生态圈介绍
一文了解大数据生态体系-Hadoop
大数据(big data):指无法在一定时间范围内用常规软件工具进行捕捉、管理 和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程 优化能力的海量、高增长率和多样化的信息资产。
架构狂人
2023/08/16
1K0
一文了解大数据生态体系-Hadoop
hadoop大数据面试题
以下资料来源于互联网,很多都是面试者们去面试的时候遇到的问题,我对其中有的问题做了稍许的修改了回答了部分空白的问题,其中里面有些考题出的的确不是很好,但是也不乏有很好的题目,这些都是基于真实的面试来的,希望对即将去面试或向继续学习hadoop,大数据等的朋友有帮助!
风火数据
2018/08/26
1.8K0
hadoop大数据面试题
菜鸟的Hadoop快速入门
大数据是一门概念,也是一门技术,是以Hadoop为代表的大数据平台框架上进行各种数据分析的技术。
数澜科技
2019/09/23
5940
菜鸟的Hadoop快速入门
2021最全大数据面试题汇总---hadoop篇,附答案!
1)Zookeeper:是一个开源的分布式应用程序协调服务,基于zookeeper可以实现同步服务,配置维护,命名服务。 2)Flume:一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。 3)Hbase:是一个分布式的、面向列的开源数据库, 利用Hadoop HDFS作为其存储系统。 4)Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据档映射为一张数据库表,并提供简单的sql 查询功能,可以将sql语句转换为MapReduce任务进行运行。 5)Sqoop:将一个关系型数据库中的数据导进到Hadoop的 HDFS中,也可以将HDFS的数据导进到关系型数据库中。
大数据小禅
2021/08/16
4.6K0
Hadoop教程(一) Hadoop入门教程「建议收藏」
Hadoop是Apache开源组织的一个分布式计算开源框架(http://hadoop.apache.org/),用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:HDFS和MapReduce,HDFS实现存储,而MapReduce实现原理分析处理,这两部分是hadoop的核心。数据在Hadoop中处理的流程可以简单的按照下图来理解:数据通过Haddop的集群处理后得到结果,它是一个高性能处理海量数据集的工具 。
全栈程序员站长
2022/08/11
1.5K0
Hadoop教程(一) Hadoop入门教程「建议收藏」
深入浅出大数据:到底什么是Hadoop?
1998年9月4日,Google公司在美国硅谷成立。正如大家所知,它是一家做搜索引擎起家的公司。
鲜枣课堂
2019/07/22
7300
深入浅出大数据:到底什么是Hadoop?
如何从零开始规划大数据学习之路!
针对第一个问题,就是ETL技术-数据的抽取,清洗,加载。传统数据抽取、清洗、加载是无法做到的。例如一个1TB的数据,需要抽取一些客户的基本信息。上万的文件,多种数据库,每个数据库有很多节点等,这些问题如何解决。第二是时间问题,如果这个ETL过长需要半个月时间,那么就没有意义的。
用户2292346
2019/06/12
6500
如何从零开始规划大数据学习之路!
Hadoop与Spark等大数据框架介绍[通俗易懂]
海量数据的存储问题很早就已经出现了,一些行业或者部门因为历史的积累,数据量也达到了一定的级别。很早以前,当一台电脑无法存储这么庞大的数据时,采用的解决方案是使用NFS(网络文件系统)将数据分开存储。但是这种方法无法充分利用多台计算机同时进行分析数据。
全栈程序员站长
2022/08/10
1.7K0
Hadoop与Spark等大数据框架介绍[通俗易懂]
Hadoop极简教程
学习大数据必先学习Hadoop,因为它是目前世界上最流行的分布式数据处理框架。 Tips:所谓大数据,是指数据量庞大、产生数度快、结构多样的价值密度低的数据。其中,数据量庞大是指数据规模超出了1,2台高性能主机所能处理范围;结构多样性是指除了关系型数据库能够处理的结构化数据还包含半结构化数据(如各类传感设备必如地镑、卫星、GPS设备等产生的纯文本格式的数据,还有良心网站NASA官网公布的txt格式的空间天气数据等成行成列的数据)和非结构化数据(视频、图像等)。这些数据的价值密度普遍较低(和具体的应用范围也有
架构师小秘圈
2018/04/02
2.9K0
Hadoop极简教程
大数据技术笔试题库
12、在MapTask的Combine阶段,当处理完所有数据时,MapTask会对所有的临时文件进行一次()。
杨校
2022/05/14
3.1K0
什么是大数据
进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB(1MB大约等于一百万字节)、GB(1024MB)、TB(1024GB),一直向上攀升,目前,PB(等于1024TB)级的数据系统已经很常见,随着移动个人数据、社交网站、科学计算、证券交易、网站日志、传感器网络数据量的不断加大,国内拥有的总数据量早已超出 ZB(1ZB=1024EB,1EB=1024PB)级别。
用户3391135
2018/11/12
1.2K0
相关推荐
Hadoop 用户入门指南:驾驭大数据的力量
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档