前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >xilinx FFT IP的介绍与仿真

xilinx FFT IP的介绍与仿真

作者头像
FPGA开源工作室
发布2020-06-29 16:48:40
2.2K0
发布2020-06-29 16:48:40
举报
文章被收录于专栏:FPGA开源工作室

1 xilinx FFT IP介绍

Xilinx快速傅立叶变换(FFT IP)内核实现了Cooley-Tukey FFT算法,这是一种计算有效的方法,用于计算离散傅立叶变换(DFT)。

1)正向和反向复数FFT,运行时间可配置。

2)变换大小N = 2m,m = 3 – 16

3)数据采样精度bx = 8 – 34

4)相位系数精度bw = 8 – 34

5)算术类型:

°无标度(全精度)定点

°定标定点

°浮点数

6)定点或浮点接口

7)蝴蝶后舍入或截断

8)Block RAM或分布式RAM,用于数据和相位因子存储

9)可选的运行时可配置转换点大小

10)可扩展的定点核心的运行时可配置扩展时间表

11)位/数字反转或自然输出顺序

12)用于数字通信系统的可选循环前缀插入

13)四种架构在内核大小和转换时间之间进行权衡

14)位精确的C模型和用于系统建模的MEX功能可供下载

15)有四种运算架构可供选择

.Pipelined Streaming I/O

.Radix-4 Burst I/O

.Radix-2 Burst I/O

.Radix-2 Lite Burst I/O

2 FFT IP接口介绍

图1 xilinx FFT IP

1)AXI4-Stream 介绍

AXI4-Stream接口带来了标准化,并增强了Xilinx IP LogiCORE解决方案的互操作性。除了诸如aclk,acclken和aresetn之类的常规控制信号以及事件信号之外,到内核的所有输入和输出都通过AXI4-Stream通道进行传输。通道始终由TVALID和TDATA以及必填字段和可选字段(如TREADY,TUSER和TLAST)组成。TVALID和TREADY一起执行握手以传输消息,其中有效负载为TDATA,TUSER和TLAST。内核对包含在TDATA字段中的操作数进行运算,并将结果输出到输出通道的TDATA字段中。

图2 AXI4-Stream时序图

图2显示了在AXI4-Stream通道中的数据传输。TVALID由通道的源(主)端驱动,而TREADY由接收器(从属)驱动。TVALID指示有效负载字段(TDATA,TUSER和TLAST)中的值有效。TREADY表示从机已准备好接收数据。当一个周期中的TVALID和TREADY均为TRUE时,将发生传输。主机和从机分别为下一次传输分别设置TVALID和TREADY。

2)s_axis_config_tdata接口介绍

s_axis_config_tdata接口携带配置信息CP_LEN,FWD / INV,NFFT和SCALE_SCH。

NFFT(变换的点大小):NFFT可以是最大变换的大小或任何较小的点大小。例如,1024点FFT可以计算点大小1024、512、256等。NFFT的值为log2(点大小)。该字段仅在运行时可配置的转换点大小时出现。

CP_LEN(循环前缀长度):从转换结束起,在输出整个转换之前,最初作为循环前缀输出的样本数。CP_LEN可以是小于点大小的从零到一的任何数字。该字段仅在循环前缀插入时出现。

FWD_INV:指示是执行前向FFT变换还是逆向FFT变换(IFFT)。当FWD_INV = 1时,将计算前向变换。如果FWD_INV = 0,则计算逆变换。

SCALE_SCH伸缩时间表:对于突发I / O架构,伸缩时间表由每个阶段的两位指定,第一阶段的伸缩由两个LSB给出。缩放比例可以指定为3、2、1或0,代表要移位的位数。N = 1024,Radix-4 Burst I / O的示例缩放计划是[1 0 2 3 2](从最后阶段到第一阶段排序)。对于N = 128,Radix-2 Burst I / O或Radix-2 Lite Burst I / O,一个可能的扩展时间表是[1 1 1 1 0 1 2](从最后阶段到第一阶段排序)。对于流水线I / O架构,从两个LSB开始,每两对Radix-2级用两位指定扩展时间表。例如,N = 256的缩放时间表可以是[2 2 2 3]。当N不是4的幂时,最后一级的最大位增长为一位。例如,对于N = 512,[0 2 2 2 2]或[1 2 2 2 2]是有效的缩放时间表,但是[2 2 2 2 2]无效。对于此变换长度,SCALE_SCH的两个MSB只能为00或01。此字段仅可用于缩放算法(非缩放,块浮点或单精度浮点)。

s_axis_config_tdata接口格式:

1.(可选)NFFT加填充

2.(可选)CP_LEN加填充

3.前转/后转

4.(可选)SCALE_SCH

举例:

内核具有可配置的转换大小,最大大小为128点,具有循环前缀插入和3个FFT通道。内核需要配置为执行8点变换,并在通道0和1上执行逆变换,并在通道2上执行前向变换。需要4点循环前缀。这些字段采用表中的值。

这给出了19位的向量长度。由于所有AXI通道必须与字节边界对齐,因此需要5个填充位,从而s_axis_config_tdata的长度为24位。

3)相关标志信号

3 xilinx FFT IP的仿真测试

FFT的长度选择8点,x输入序列为x=[1,2,3,4,5,6,7,8];

Matlab验证:

代码语言:javascript
复制
clear all
close all
clc
 
x = [1,2,3,4,5,6,7,8];
y =fft(x,8);
realy=real(y);
imagy=imag(y);

Y的实部输出为realy=[36,-4,-4,-4,-4,-4,-4,-4];

Y的虚部输出为imagy=[0,9.6569,4,1.6569,0,-1.6569,-4,-9.6569];

FPGA仿真验证:

1)IP的设置

2)仿真顶层

代码语言:javascript
复制
`timescale 1ns / 1ps

 
module tb_fft_top(
 
    );
    reg aclk;                        
    reg [7 : 0] s_axis_config_tdata;
    reg         s_axis_config_tvalid;        
    wire        s_axis_config_tready;       
    wire [31 : 0] s_axis_data_tdata;  
    reg         s_axis_data_tvalid;          
    wire        s_axis_data_tready;         
    reg         s_axis_data_tlast;           
    wire [31 : 0] m_axis_data_tdata;
    wire        m_axis_data_tvalid;         
    reg         m_axis_data_tready;  
    wire        m_axis_data_tlast;
    reg [15:0] real_data;
    reg [15:0] imag_data;
    wire [15:0] real_dataout;
    wire [15:0] imag_dataout;
    reg [9:0]  cnt;
    assign s_axis_data_tdata={real_data,imag_data};
    assign real_dataout = m_axis_data_tdata[31:16];
    assign imag_dataout = m_axis_data_tdata[15:0];
    initial begin
      aclk = 0;
      s_axis_config_tdata=8'b0;
      s_axis_config_tvalid=1'b0;
      s_axis_data_tvalid=1'b0;
      s_axis_data_tlast=1'b0;
      real_data=16'd0;
      imag_data=16'd0;
      cnt = 0;
      m_axis_data_tready=1'b1;
      #1000;
      s_axis_config_tdata=8'b0000_0001;
      s_axis_config_tvalid=1'b1;
      #10;
      s_axis_config_tdata=8'b0000_0000;
      s_axis_config_tvalid=1'b0;
      #1000;
      repeat(8)begin
        s_axis_data_tvalid=1'b1;
        real_data=real_data+16'd1;
        cnt=cnt+1;
        if(cnt==8) s_axis_data_tlast=1'b1;
        #10;
      end
      s_axis_data_tvalid=1'b0;
      s_axis_data_tlast=1'b0;
      real_data=16'd0;
      #1000;
      $stop;
    end
    always #(5) aclk= ~aclk;
fft_top Ufft_top(
      .aclk(aclk),                                                // input wire aclk
      .s_axis_config_tdata(s_axis_config_tdata),                  // input wire [7 : 0] s_axis_config_tdata
      .s_axis_config_tvalid(s_axis_config_tvalid),                // input wire s_axis_config_tvalid
      .s_axis_config_tready(s_axis_config_tready),                // output wire s_axis_config_tready
      .s_axis_data_tdata(s_axis_data_tdata),                      // input wire [31 : 0] s_axis_data_tdata
      .s_axis_data_tvalid(s_axis_data_tvalid),                    // input wire s_axis_data_tvalid
      .s_axis_data_tready(s_axis_data_tready),                    // output wire s_axis_data_tready
      .s_axis_data_tlast(s_axis_data_tlast),                      // input wire s_axis_data_tlast
      .m_axis_data_tdata(m_axis_data_tdata),                      // output wire [31 : 0] m_axis_data_tdata
      .m_axis_data_tvalid(m_axis_data_tvalid),                    // output wire m_axis_data_tvalid
      .m_axis_data_tready(m_axis_data_tready),                    // input wire m_axis_data_tready
      .m_axis_data_tlast(m_axis_data_tlast)                      // output wire m_axis_data_tlast       
          );
endmodule

3)仿真结果

Vivado最终的仿真结果为

Real=[36,-4,-4,-4,-4,-4,-4,-4];

Imag=[0,-10,-4,-2,0,1,4,9];

与matlab的计算结果相比实部一样,除虚部因为数据位的取舍问题以外,正数和负数部分顺序相反。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-06-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 FPGA开源工作室 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库一体机 TData
数据库一体机 TData 是融合了高性能计算、热插拔闪存、Infiniband 网络、RDMA 远程直接存取数据的数据库解决方案,为用户提供高可用、易扩展、高性能的数据库服务,适用于 OLAP、 OLTP 以及混合负载等各种应用场景下的极限性能需求,支持 Oracle、SQL Server、MySQL 和 PostgreSQL 等各种主流数据库。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档