首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Will Multi-Cloud Become The Ultimate Business Strategy In 2020?

Will Multi-Cloud Become The Ultimate Business Strategy In 2020?

原创
作者头像
用户7478942
修改于 2020-06-22 09:11:37
修改于 2020-06-22 09:11:37
6170
举报
文章被收录于专栏:cloud computingcloud computing

If we are to sort the cool kids in the business tech world right now, Cloud computing will turn out to be the coolest of them all. And we are not saying this just because we want to. In the current business world, there is a serious rush among organizations to switch to cloud computing as soon as possible. This rising popularity is not baseless though. Cloud computing simply has more benefits to leverage than an on-site IT infrastructure.

Recently IDG conducted a 2020 Cloud Computing Survey among businesses, and it reveals some stunning statistics regarding the shift in cloud computing. The survey which was conducted on 500 tech buyers, discussed some interesting turn points for the cloud computing integration trends.

Mass Adaptation Craze Or Real Valuable Decision?

According to the survey, 92% of organizations have admitted that their applications are already in the cloud, and this percentage is expected to increase by up to 95% in 18 months. During the survey, 59% of people in the buying process for cloud computing solutions said that they have plans to switch almost all of the IT functionalities in the cloud within these 18 months, while 38% are already operating the IT structure of their companies from the cloud.

This mass adaptation comes not as a surprise, but as a somewhat obvious result of the rising benefits of cloud computing compared to on-premise data centers. The benefits of the cloud, such as reliability, agility, and scalability are giving the on-premise IT a serious run for its money. So much so that at this point no IT company is even thinking about keeping their IT environment on site.

Budgeting The Cloud: It’s Not About The Cost

With 92% of organizations vowing to move to cloud-based environments, the question of cost does come to mind. According to the survey, respondents revealed that in the next 12 month period they would invest around $73.8 million on average, which is an incredible 59% rise from the 2018 research. Also to be noted, this is a whopping 32% of the IT budget that will be allocated for cloud solutions.

However, this research was conducted before the economy took a downward spiral. Now it’s just a waiting game to see if this downturn will decrease this amount allocated for Cloud-Based Applications or cause a serious rise once again, considering that cloud service demands are really high right now.

It is expected that in the next one and a half years, the share of SaaS applications of various organizations will rise from the current 24% to 36%. The cloud infrastructure as an application development platform will reach 48% which happens to be 42% right now.

Managing The Multi-Cloud: The Real Benefits

The various cloud computing services online offer a wide range of quality, weakness, and strengths. And that is why most businesses are choosing a multi-cloud strategy, that includes different types of cloud computing, such as public, private as well as hybrid cloud systems. According to the IDG survey, 49% of organizations are driven to adapt to this strategy because they want the best possible service.

The widespread adaptation of a multi-cloud strategy is mainly due to the various benefits, such as the ones listed below. 1. Fitting The Business Requirements Perfectly

One of the top benefits of choosing a multi-cloud strategy is that business owners do not have to optimize key requirements to fit the services provided. Businesses now have the freedom to align one business task with one SaaS provider, while choosing another service provider for another task. This way organizations can grow and utilize modern application architecture without having to limit their functionalities. 2. Better Pricing

This strategy helps organizations to find the best prices of cloud computing software for their requirements. They can compare the rates of different multi-cloud service providers and choose for themselves which service provider serves their purpose best. In these cases, factors such as contracts and how adjustable they are, payment flexibility are a few of the most important elements. 3. Agile Work Process

Integrating a cloud computing infrastructure is still not an easy task, mainly due to the fact that lots of companies tend to struggle with legacy systems and old structures. But with the help of effective service providers, businesses can draw plans that can increase the agility of the inner workflow. With a properly optimized work process, web design companies would be able to perform even better. 4. Resilient Data Protection Services

Multi-cloud computing strategy brings some more resilience to the businesses when it comes to data security. With multi-cloud computing security, the company gets better chances of backing up their data and retrieving it in case of any emergency. And that’s why this has become one of the primary elements of any business’s disaster management strategy. 5. Scalable

With real-time synchronization and automation features, Multi-Cloud management platforms are one of the most favorite among the business owners. The storage or data analytics facility can be scaled according to the demands of the business, ensuring future scalability and increasing the business capacity of the organizations. 7. Avoiding The ‘vendor Lock-in’

Vendor lock-in is a popular and yet dreaded thing in the business world. It happens when a business enters a contract with the service providers without evaluating the contract and gets stuck with some kind of unbreakable or rigid clause in the contract.

With a multi-cloud strategy, businesses can carefully evaluate the contracts and have a better negotiation position, from where they can change service providers. This vendor lock-in happens to be one of the main reasons why multi-cloud computing for small business are becoming popular. 8. Improvements In Network Performance

With rapidly developing multi-cloud computing concepts technology & architecture, businesses can harness the better speed and better network facilities than their competitors. It uses fast and low-latency connections, enhancing application response times. All this happens without the businesses having to spend a lot on integrating cloud systems on their IT infrastructure.

Wrapping Up: Is It Time For You To Start Juggling Clouds Too?

There’s no doubt that in the coming years’ cloud computing is going to become the new norm while on-site IT structure becomes a thing of history books. And in such a scenario, a multi-cloud strategy is turning up to be a more and more intriguing solution for businesses that want more flexibility and more benefits. This is in fact the right time for the businesses to switch to a multi-cloud strategy and integrate the functionalities for better business growth in the coming future.

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
tensorflow Object Detection API使用预训练模型mask r-cnn实现对象检测
Mask R-CNN是何凯明大神在2017年整出来的新网络模型,在原有的R-CNN基础上实现了区域ROI的像素级别分割。关于Mask R-CNN模型本身的介绍与解释网络上面已经是铺天盖地了,论文也是到处可以看到。这里主要想介绍一下在tensorflow中如何使用预训练的Mask R-CNN模型实现对象检测与像素级别的分割。tensorflow框架有个扩展模块叫做models里面包含了很多预训练的网络模型,提供给tensorflow开发者直接使用或者迁移学习使用,首先需要下载Mask R-CNN网络模型,这个在tensorflow的models的github上面有详细的解释与model zoo的页面介绍, tensorflow models的github主页地址如下: https://github.com/tensorflow/models
OpenCV学堂
2018/09/29
5.9K2
tensorflow Object Detection API使用预训练模型mask r-cnn实现对象检测
利用Tensorflow构建自己的物体识别模型(一)
利用Tensorflow训练搭建自己的物体训练模型,万里长征第一步,先安装tensorflow。
月小水长
2019/07/31
6770
利用Tensorflow构建自己的物体识别模型(一)
MaskRCNN 基于OpenCV DNN的目标检测与实例分割
这里主要记录基于 OpenCV 4.x DNN 模块和 TensorFlow MaskRCNN 开源模型的目标检测与实例分割 的实现.
AIHGF
2019/05/13
2K0
MaskRCNN 基于OpenCV DNN的目标检测与实例分割
目标检测_1
注:上编的路径尽量使用绝对路径,不要使用相对路径和~符号 可能报错 生成frozen_inference_graph.pb文件 及其他文件
Dean0731
2020/05/08
6140
构建对象检测模型
我喜欢深度学习。坦率地说,这是一个有大量技术和框架可供倾注和学习的广阔领域。当我看到现实世界中的应用程序,如面部识别和板球跟踪等时,建立深度学习和计算机视觉模型的真正兴奋就来了。
磐创AI
2020/07/24
1.5K0
构建对象检测模型
ubunu16.04 TensorFlow object detection API 应用配置
TensorFlow object detection API应用–配置 主要参考 : https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md https://www.cnblogs.com/zongfa/p/9662832.html
用户1148525
2019/05/26
6130
TensorFlow 目标检测模型转换为 OpenCV DNN 可调用格式
在 OpenCV4.X 版本(OpenCV3.4.1之后版本) 可以采用 cv2.dnn.readNetFromTensorflow(pbmodel, pbtxt) 函数直接调用 TensorFlow 训练的目标检测模型.
AIHGF
2019/05/13
2.7K0
TensorFlow 目标检测模型转换为 OpenCV DNN 可调用格式
视频目标检测识别
之前文章目标检测API 已经介绍过API的基本使用,这里就不赘述了,直接上本次内容的代码了,添加的内容并不多。将测试的test.mp4原文件放到models-master\research\object_detection路径下,并创建一个detect_video.py文件,代码内容如下:
全栈程序员站长
2022/06/30
1.6K0
视频目标检测识别
干货 | tensorflow模型导出与OpenCV DNN中使用
Deep Neural Network - DNN 是OpenCV中的深度神经网络模块,支持基于深度学习模块前馈网络运行、实现图像与视频场景中的
OpenCV学堂
2019/04/29
5.1K0
干货 | tensorflow模型导出与OpenCV DNN中使用
使用TensorFlow一步步进行目标检测(5)
本教程进行到这一步,您选择了预训练的目标检测模型,转换现有数据集或创建自己的数据集并将其转换为TFRecord文件,修改模型配置文件,并开始训练模型。接下来,您需要保存模型并将其部署到项目中。
云水木石
2019/07/01
5930
使用TensorFlow一步步进行目标检测(5)
Mask-RCNN模型的实现自定义对象(无人机)检测
打开标注工具PixelAnnotation 选择好dataset路径之后,顺序开始标注数据即可!
OpenCV学堂
2019/08/09
1.9K2
Mask-RCNN模型的实现自定义对象(无人机)检测
深度学习入门篇--手把手教你用 TensorFlow 训练模型
该文介绍了如何使用TensorFlow实现YOLO v2神经网络模型对图像进行分类,并给出了代码示例和训练过程的详细步骤。
付越
2017/10/16
10K2
深度学习入门篇--手把手教你用 TensorFlow 训练模型
tensorflow object detection API使用之GPU训练实现宠物识别
之前写过几篇关于tensorflow object detection API使用的相关文章分享,收到不少关注与鼓励,所以决定再写一篇感谢大家肯定与支持。在具体介绍与解释之前,首先简单说一下本人测试与运行的系统与软件环境与版本
OpenCV学堂
2019/11/13
2.5K1
【TensorFlow】使用迁移学习训练自己的模型
最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。
刘早起
2020/04/23
2.4K0
体感游戏 | 手势识别玩飞机大战游戏(四) 使用深度学习实现手势识别玩飞机大战游戏
今天是第四部分:使用深度学习实现手势识别玩飞机大战游戏的功能。这里标题我把TensorFlow实现改为了深度学习实现,这里识别手势主要用到的是目标检测,当然不止TensorFlow可以实现,其他能够做到实时的目标检测网络也很多,比如最近比较火的YoloV4/V5。这里演示我为了方便,就用我以前训练好的SSD手势识别模型,你只需要使用下面的代码,加载模型就可以测试:
Color Space
2021/01/22
2K0
tensorflow object detection API 详细实践教程
最近由于研究方向的更换,接触到了目标检测(Object Detection)领域,觉得很有意思,并且阅读了该方向的相关经典文献,包括Fast-RCNN、Faster-RCNN、SSD、YOLO以及RetinaNet等。复现别人代码并且能够得到在公开数据集上和原作者相近甚至相同的实验结果对于我们做研究甚至以后的工作来说是至关重要的。
狼啸风云
2022/06/06
8200
tensorflow object detection API 详细实践教程
[Tensorflow] 使用SSD-MobileNet训练模型
因为Android Demo里的模型是已经训练好的,模型保存的label都是固定的,所以我们在使用的时候会发现还有很多东西它识别不出来。那么我们就需要用它来训练我们自己的数据。下面就是使用SSD-MobileNet训练模型的方法。
wOw
2018/09/18
14.1K3
使用Tensorflow Object Detection API实现对象检测
Tensorflow Object Detection API自从发布以来,其提供预训练模型也是不断更新发布,功能越来越强大,对常见的物体几乎都可以做到实时准确的检测,对应用场景相对简单的视频分析与对象检测提供了极大的方便与更多的技术方案选择。tensorflow object detection提供的预训练模型都是基于以下三个数据集训练生成,它们是:
OpenCV学堂
2018/07/26
1.2K0
使用Tensorflow Object Detection API实现对象检测
行人检测--OpenCV与TensorFlow SSD对比
OpenCV行人检测我们使用HOG特征提取+SVM训练,使用默认API检测,详细了解可参考:https://zhuanlan.zhihu.com/p/75705284
Color Space
2020/01/13
3.4K0
行人检测--OpenCV与TensorFlow SSD对比
Faster RCNN 基于 OpenCV DNN 的目标检测实现
在前面已经测试过 YOLOV3 和 SSD 基于 OpenCV DNN 的目标检测实现,这里再简单实现下 Faster RCNN 基于 DNN 的实现.
AIHGF
2019/05/13
1.1K0
Faster RCNN 基于 OpenCV DNN 的目标检测实现
推荐阅读
相关推荐
tensorflow Object Detection API使用预训练模型mask r-cnn实现对象检测
更多 >
LV.0
这个人很懒,什么都没有留下~
交个朋友
加入腾讯云官网粉丝站
蹲全网底价单品 享第一手活动信息
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档