前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >混淆矩阵及其可视化

混淆矩阵及其可视化

作者头像
老肥码码码
发布2020-04-26 12:59:04
2.1K0
发布2020-04-26 12:59:04
举报
文章被收录于专栏:算法与数据之美

混淆矩阵(Confusion Matrix)是机器学习中用来总结分类模型预测结果的一个分析表,是模式识别领域中的一种常用的表达形式。它以矩阵的形式描绘样本数据的真实属性和分类预测结果类型之间的关系,是用来评价分类器性能的一种常用方法。

我们可以通过一个简单的例子来直观理解混淆矩阵。下面两个列表分别是通过分类模型我们得到的预测结果以及真实的类别。

代码语言:javascript
复制
y_pred=["ant", "ant", "cat", "cat", "ant", "cat"]   #预测
y_true=["cat", "ant", "cat", "cat", "ant", "bird"]   #真实

下图便是上面给出数据的混淆矩阵,数轴的标签表示真实属性,而横轴的标签表示分类的预测结果。此矩阵的第一行第一列这个数字2表示ant被成功分类成为ant的样本数目,第三行第一列的数字1表示cat被分类成ant的样本数目,诸如此类。

混淆矩阵的每一行数据之和代表该类别的真实的数目,每一列之和代表该类别的预测的数目,矩阵的对角线上的数值代表被正确预测的样本数目。

那么这个混淆矩阵是如何绘制的呢?

这里给出两种简单的方法,一是使用seaborn的热力图来绘制,可以直接将混淆矩阵可视化;

代码语言:javascript
复制
C=confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
df=pd.DataFrame(C,index=["ant", "bird", "cat"],columns=["ant", "bird", "cat"])
sns.heatmap(df,annot=True)

另外一种是使用matplotlib的matshow来绘制。

代码语言:javascript
复制
plt.matshow(C, cmap=plt.cm.Greens)
plt.colorbar()
for i in range(len(C)):
    for j in range(len(C)):
        plt.annotate(C[i,j], xy=(i, j), horizontalalignment='center', verticalalignment='center')
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

效果如下:

利用混淆矩阵的可视化结果,我们能够有侧重地分析误判的类别,从而对机器学习的模型进行调整。

代码语言:javascript
复制
——END——
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-04-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 算法与数据之美 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档