前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >torch.flatten()

torch.flatten()

作者头像
狼啸风云
修改2022-09-02 22:35:51
2.1K0
修改2022-09-02 22:35:51
举报
文章被收录于专栏:计算机视觉理论及其实现

先看函数参数:

代码语言:javascript
复制
torch.flatten(input, start_dim=0, end_dim=-1)

input: 一个 tensor,即要被“推平”的 tensor。

start_dim: “推平”的起始维度。

end_dim: “推平”的结束维度。

首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 [n][n] 的tensor,其中 nn 即 input 中元素个数。

如果我们要自己设定起始维度和结束维度呢?

我们要先来看一下 tensor 中的 shape 是怎么样的:

代码语言:javascript
复制
t = torch.tensor([[[1, 2, 2, 1],
                   [3, 4, 4, 3],
                   [1, 2, 3, 4]],
                  [[5, 6, 6, 5],
                   [7, 8, 8, 7],
                   [5, 6, 7, 8]]])
print(t, t.shape)

运行结果:

tensor([[[1, 2, 2, 1],
         [3, 4, 4, 3],
         [1, 2, 3, 4]],

        [[5, 6, 6, 5],
         [7, 8, 8, 7],
         [5, 6, 7, 8]]])
torch.Size([2, 3, 4])

我们可以看到,最外层的方括号内含两个元素,因此 shape 的第一个值是 2;类似地,第二层方括号里面含三个元素,shape 的第二个值就是 3;最内层方括号里含四个元素,shape 的第二个值就是 4。

示例代码:

代码语言:javascript
复制
x = torch.flatten(t, start_dim=1)
print(x, x.shape)

y = torch.flatten(t, start_dim=0, end_dim=1)
print(y, y.shape)


运行结果:

tensor([[1, 2, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4],
        [5, 6, 6, 5, 7, 8, 8, 7, 5, 6, 7, 8]]) 
torch.Size([2, 12])

tensor([[1, 2, 2, 1],
        [3, 4, 4, 3],
        [1, 2, 3, 4],
        [5, 6, 6, 5],
        [7, 8, 8, 7],
        [5, 6, 7, 8]]) 
torch.Size([6, 4])

可以看到,当 start_dim = 11 而 end_dim = −1−1 时,它把第 11 个维度到最后一个维度全部推平合并了。而当 start_dim = 00 而 end_dim = 11 时,它把第 00 个维度到第 11 个维度全部推平合并了。pytorch中的 torch.nn.Flatten 类和 torch.Tensor.flatten 方法其实都是基于上面的 torch.flatten 函数实现的。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/04/21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档