Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >LeetCode46 回溯算法求全排列,这次是真全排列

LeetCode46 回溯算法求全排列,这次是真全排列

作者头像
TechFlow-承志
发布于 2020-04-14 13:53:48
发布于 2020-04-14 13:53:48
68800
代码可运行
举报
文章被收录于专栏:TechFlowTechFlow
运行总次数:0
代码可运行

在之前的文章当中,我们讲过八皇后、回溯法,也提到了全排列,但是毕竟没有真正写过。今天的LeetCode46题正是让我们生成给定元素的全排列。

题意很简单,只有一句话,给定一个没有重复元素的序列,让我们返回这个序列所有的全排列,并且我们不需要考虑这些排列的顺序。

回溯法

我们在之前的文章当中分析过,全排列问题,可以看成是搜索问题,从而近似成八皇后问题。在八皇后问题当中,我们枚举的是棋盘的每一行当中的皇后放置的位置,而全排列其实也一样,我们要枚举每一个元素放置的位置。不过八皇后当中要求皇后除了不能同行同列之外还不能同对角线,而我们排列元素可以忽略这个要求。也就是说我们把每一行皇后放置的列号看成是每个元素摆放的位置,并且忽略同对角线的限制的话,那么八皇后问题和全排列问题就完全一样了。

如果还不理解,可以参考一下下图,我们给皇后编号,把皇后同样看成是序列当中的元素,那么八皇后的摆放位置刚好可以映射成一种排列。映射的方式非常简单,就是我们忽略行的信息,依次记录下皇后摆放的列号。

如果你能想通这两个看似完全不同的问题当中的相似之处,说明你对搜索问题的理解已经有些入门了。

思路清楚了,总之我们要枚举皇后摆放的状态。你可以按顺序遍历位置,然后枚举各个位置上放置的皇后,也可以顺序遍历皇后,枚举当前皇后可以放置的位置。两者是等价的,你可以根据自己的理解进行操作。

一般来说我喜欢遍历位置,枚举皇后。因为会引起冲突的是皇后,而不是位置。我们往往要判断皇后之间的关系以及皇后的状态,所以我们枚举皇后会比较贴合思路

所以我们把之前八皇后的代码拿过来稍作修改即可,为了放置一个皇后重复放置在多个位置,我们需要存储皇后的状态,即有没有放置过。一般竞赛当中这种标记的变量称为flag,如果标记多个那就是flag数组。更多细节我们来看代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class Solution:
    def dfs(self, nums, n, i, cur, ret, flag):
        if i == n:
            ret.append(cur.copy())
            return
        for p in range(n):
            # 遍历所有元素
            # 如果p元素已经放置过了,跳过
            if flag[p]:
                continue
            # 当前位置放置p
            cur.append(nums[p])
            # flag[p]置为True
            flag[p] = True
            # 递归
            self.dfs(nums, n, i+1, cur, ret, flag)
            # 回溯
            cur.pop()
            flag[p] = False
        
    def permute(self, nums: List[int]) -> List[List[int]]:
        ret = []
        n = len(nums)
        # 记录元素i有没有放置过
        flag = [False for _ in range(n)]
        self.dfs(nums, n, 0, [], ret, flag)
        return ret

代码很短,细节也不多,只要理解了我们是按照顺序遍历位置,然后对于每一个位置遍历可以放置的元素,然后递归回溯即可。基本上可以说是模板题,如果理解有难度的话,可以看一下之前详解八皇后问题的文章:

LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

其他方法

回溯法是这个问题的标准解法,那么这题还有没有其他方法呢?

其实是有的,也不难,在LeetCode31题的文章,也就是上面那个链接的文章当中我们解决了一个叫做下一个排列的问题。在这道题当中,我们给定一个序列,要求返回在它所有的全排列当中刚好字典序比它大1的排列,这个方法称为next_permutation。

关于next_permutation的计算方法也在链接里,如果有忘记的或者是最近关注的可以点下链接回顾一下,计算方法是完全一样的,我就不再重复了,链接和上面的是一样的,上面看过了这里就不用点了。

LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

如果还记得这道题的话就好办了,我们使用它很容易解出当前的问题。因为我们只需要获得给定序列的最小排列,然后不停地调用这个方法就好了,直到没有更大的序列退出即可。从最小的序列一直获取到最大的,当然就是全排列了。

在LeetCode31题当中,这是一个inplace的方法,没有返回值。并且当序列达到最大的时候,会自动再从最小的开始。我们需要稍稍修改一下,加上一个返回值,表示当前的序列是否是最大的。如果序列达到最大,说明我们可以不用继续往下寻找了,我们return一个True,表示可以退出了,否则我们return False,表示还有其他结果。

本质上我们是从最小的排列开始,不停地用一个叫做get_next的方法获取比当前序列大的下一个序列,当没有更大的序列的时候,说明我们已经获得了所有的排列,那么直接返回结果即可。如果忽略get_next当中的逻辑,这个代码其实只有几行:

其实这是一个取巧的办法,利用之前的思路我们完全不用思考,几乎可以无脑得到答案。但是从另外一个角度来说,这也是算法的魅力,毕竟通往终点的路往往不止一条。

最后我们来看下代码,如果你不懂怎么算next_permutation光看注释是很难看懂的,划到上面的链接看看吧。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class Solution:
    def get_next(self, nums: List[int]):
        """
        Do not return anything, modify nums in-place instead.
        """
        # 长度
        n = len(nums)
        # 记录图中i-1的位置
        pos = n - 1
        for i in range(n-1, 0, -1):
            # 如果降序破坏,说明找到了i
            if nums[i] > nums[i-1]:
                pos = i-1
                break
                
        for i in range(n-1, pos, -1):
            # 从最后开始找大于pos位置的
            if nums[i] > nums[pos]:
                # 先交换元素,在进行翻转
                nums[i], nums[pos] = nums[pos], nums[i]
                # 翻转[pos+1, n]区间
                nums[pos+1:] = nums[n:pos:-1]
                return False
        return True
        
        
    def permute(self, nums: List[int]) -> List[List[int]]:
        ret = []
        # 从小到大排序,获得最小排列
        nums = sorted(nums)
        ret.append(nums.copy())
        # 如果还有下一个排列则继续调用
        while not self.get_next(nums):
            # 要.copy()是因为Python中存储的引用,如果不加copy
            # 会导致当nums发生变化之后,ret中存储的数据也会变化
            ret.append(nums.copy())
        return ret

今天的问题并不难,只是Medium难度,并且题目的题意还是之前见过的,主要是给大家加深一下回溯算法的印象用的,没什么太多的新内容。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-04-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder梁 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
​LeetCode刷题实战46:全排列
算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
程序员小猿
2021/01/20
3900
​LeetCode刷题实战46:全排列
LeetCode47, 全排列进阶,如果有重复元素怎么办?
LeetCode就是喜欢这样,把类似的问题放在一起,让你刷的时候一起刷,从而更加深刻地理解。今天的问题同样是全排列,不过稍稍不同的是,我们有一个限制条件不一样,给定的元素当中可能存在重复。但是元素存在重复,我们并不想最后的结果也出现重复,这个时候应该怎么办?
TechFlow-承志
2020/04/14
1.4K0
高频面试题LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚
今天我们讲的是LeetCode的31题,这是一道非常经典的问题,经常会在面试当中遇到。在今天的文章当中除了关于题目的分析和解答之外,我们还会详细解读深度优先搜索和回溯算法,感兴趣的同学不容错过。
帅地
2020/03/05
7320
Js算法与数据结构拾萃(6):回溯
对于某些计算问题而言,回溯法是一种可以找出所有(或一部分)解的一般性算法,尤其适用于约束满足问题(在解决约束满足问题时,我们逐步构造更多的候选解,并且在确定某一部分候选解不可能补全成正确解之后放弃继续搜索这个部分候选解本身及其可以拓展出的子候选解,转而测试其他的部分候选解)。
一粒小麦
2020/02/25
1.1K0
【回溯算法】回溯,从入门到入土,七道试题精选、精讲、精练
前期准备,要玩得转回溯,递归的基础还是要有的,所以前些日子我就先把递归部分给办了。 【LeetCode】递归 原理入门+复杂度计算+练手试题
看、未来
2020/08/25
4730
【回溯算法】回溯,从入门到入土,七道试题精选、精讲、精练
一文学会回溯算法解题技巧
上文我们学习了深度优先搜索和广度优先搜索,相信大家对这两者的算法有了比较清楚的认识,值得一提的,深度优先算法用到了回溯的算法思想,这个算法虽然相对比较简单,但很重要,在生产上广泛用在正则表达式,编译原理的语法分析等地方,很多经典的面试题也可以用回溯算法来解决,如八皇后问题,排列组合问题,0-1背包问题,数独问题等,也是一种非常重要的算法。
kunge
2020/04/26
1K0
从全排列看回溯算法
最近又刷起了算法,仿佛回到了大一时奋战到深夜场景,走上社会之初发现大学里学的都是啥玩意儿,工作中基本遇不到,各种数据结构都被封装的妥妥的根本不需要我们去操心,以至于越来越浮于表面。
sealyun
2020/02/11
7940
从全排列看回溯算法
【C++】算法集锦(3):回溯,从入门到入土,七道试题精选、精讲、精练
回溯算法,之前也是写过的,感觉还不错。但是之前分成两篇写了,现在重新整理一下,顺便我自己也回顾一下。
看、未来
2021/09/18
3980
【算法专题】回溯算法
回溯算法是⼀种经典的递归算法,通常用于解决组合问题、排列问题和搜索问题等。回溯算法的基本思想:从一个初始状态开始,按照一定的规则向前搜索,当搜索到某个状态无法前进时,回退到前一个状态,再按照其他的规则搜索。回溯算法在搜索过程中维护一个状态树,通过遍历状态树来实现对所有可能解的搜索。
YoungMLet
2024/03/01
2310
【算法专题】回溯算法
全排列(LeetCode 46)
给定一个不含重复数字的数组 nums ,返回其所有可能的全排列 。你可以按任意顺序返回答案。
恋喵大鲤鱼
2024/05/24
1010
全排列(LeetCode 46)
回溯算法 | 追忆那些年曾难倒我们的八皇后问题
说起八皇后问题,它是一道回溯算法类的经典问题,也可能是我们大部分人在上数据结构或者算法课上遇到过的最难的一道题……
bigsai
2020/11/03
7550
回溯算法 | 追忆那些年曾难倒我们的八皇后问题
回溯算法的经典应用 - 排列与组合
回溯算法实际上是对所有结果的一种暴力枚举方法,以走迷宫为例,它尝试走每条路径,一旦路径不通则退回到最近的分岔点,继续尝试下一条路径,如此反复,直到找到一条正确的路径,或者走完所有路径。对于诸如八皇后、数独这类往往需要枚举所有可能性方案的问题,使用回溯算法再合适不过了。回溯算法采用递归的方式去遍历所有可能结果,时间复杂度高达 O(n!) ,一般需要伴随“剪枝”操作,以应对庞大的时间复杂度。
兜兜转转
2023/03/29
1.1K0
回溯算法的经典应用 - 排列与组合
LeetCode 93 | 生成所有有效的IP地址
今天是LeetCode专题的第59篇文章,我们一起来看看LeetCode第93题,有效ip地址(Restore IP Addresses)。
TechFlow-承志
2020/08/04
1.4K0
【回溯+剪枝】回溯算法的概念 && 全排列问题
​ 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
利刃大大
2025/02/03
1280
【回溯+剪枝】回溯算法的概念 && 全排列问题
回溯算法详解(修订版)
这篇文章是很久之前的一篇《回溯算法详解》的进阶版,之前那篇不够清楚,就不必看了,看这篇就行。把框架给你讲清楚,你会发现回溯算法问题都是一个套路。
labuladong
2021/09/23
4540
​LeetCode刷题实战93:复原IP地址
https://leetcode-cn.com/problems/restore-ip-addresses/
程序员小猿
2021/01/19
5710
聊一聊回溯算法
回溯法(英语:backtracking)是暴力搜寻法中的一种。是一种可以找出所有(或一部分)解的一般性算法
COY_fenfei
2023/08/05
6060
聊一聊回溯算法
【愚公系列】2023年12月 五大常用算法(二)-回溯算法
回溯算法的基本思想是在搜索过程中,对每个可能的步骤都尝试一遍,如果该步骤不行,则回溯到上一步,尝试其他可能的步骤,直到找到解决问题的方案。回溯算法通常用于解决搜索和优化问题,如数独游戏、全排列、组合、子集、棋盘问题等。
愚公搬代码
2023/12/13
3141
【LeetCode两题选手】算法类题目(7.27)
回溯法 :一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解的话(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。
看、未来
2020/08/26
3110
LeetCode 3题合集,砍瓜切菜刷三题不费劲
今天是LeetCode专题的第34篇文章,刚好接下来的题目比较简单,很多和之前的做法类似。所以我们今天出一个合集,一口气做完接下来的57、59和60这三题。
TechFlow-承志
2020/05/14
4160
相关推荐
​LeetCode刷题实战46:全排列
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验