前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >计算机视觉(CV)任务介绍:分类、检测、分割、超分、关键点识别、图像生成、度量学习

计算机视觉(CV)任务介绍:分类、检测、分割、超分、关键点识别、图像生成、度量学习

作者头像
用户7164815
发布2020-04-08 12:00:48
8.6K0
发布2020-04-08 12:00:48
举报
文章被收录于专栏:AI人工智能与大数据

CV(Computer Vision,计算机视觉)是AI的两大重要应用之一(另一个是NLP,Natural Language Processing),具体有哪些任务,有哪些技术和模型呢?在本文中先简要介绍这些任务,每种任务使用的具体的技术和模型,以及其相互之间的对比,放在后续文章中介绍,敬请期待。

在题目中也提到了,CV类任务大概有这些分类:分类、检测、分割、关键点识别、图像生成、度量学习。这些任务的共同之处是输入都是图片,而输出就和具体的任务相关了。

分类任务(Clarification)很好理解,就是对输入图片进行分类(具体可选类别需要事先确定)。分类任务是其他CV任务的基础。例如下图输入一张猫的图片,网络输出这张图片是猫的概率。

检测任务(Detection)是检测出图片中的物体位置,一般需要进行画框。比如下图中把人、羊,还有狗都框出来了,具体来说,网络需要输出框的坐标。

分割任务(Segmentation)是在检测任务的基础上把框精细化,具体到每个像素的分类。在上图的检测任务中,矩形框还是比较粗糙的,并不知道每个像素具体属于哪个物体。下图中语义分割任务输出的绿色像素是背景,蓝色像素属于羊,红色像素是狗,还有一个颜色的像素属于人。当然,可以再精细一些,比如不同的羊的像素点用不同的颜色标记出来,那就是实例分割

超分任务(Super Resolution, SR)是超分辨率的简称,简单地说就是增加图片的分辨率。例如下图中左边的图片输入到神经网络中,输出右边图片的分辨率提高,图片更清晰。

关键点识别(Key Point)任务是找出图片中的关键点,最常见的就是人体关键点检测,例如下图中的线就是由几个关键点连成的,可以用来判断人的姿态。

图像生成任务是指根据输入(可以是图片或者其他数据),生成目标图像。例如下图中的风格迁移,生成了一个新的图片,具有一张图片的轮廓和另一张图片的风格。图像生成任务也可以合成人脸、图像修复等等。

度量学习任务是要判断输入之间的距离到底多少,例如两个图片之间的距离,这时候欧氏距离肯定是不合适的,需要神经网络去学习如何度量。具体的应用如人脸识别,判断摄像头前的人是否和身份证一致。

这些就是CV领域的主要任务,后续再详细介绍每一种任务使用的算法和模型,敬请期待~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-10-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI人工智能与大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人脸识别
腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档